The Terpene Synthase Gene Family in Norway Spruce

  • Xue-Mei Yan
  • Shan-Shan Zhou
  • Ilga M. Porth
  • Jian-Feng MaoEmail author
Part of the Compendium of Plant Genomes book series (CPG)


Terpenes (isoprenes) represent a diverse group of chemical compounds that plants produce during normal development (e.g., phytohormones), and mostly as secondary metabolites with important roles in defense responses against diverse environmental stressors, either abiotic or biotic in nature. Studies with an aspect on conifer-derived terpenes have highlighted some of the underlying metabolic and molecular mechanisms in the implicated defense processes. Terpene synthases (TPSs), being the core enzymes for terpenes’ functional diversity, therefore, gained attention as the key elements for molecular terpene studies. Norway spruce (Picea abies) is arguably Europe’s native conifer with the most substantial economic and ecological value given its vast geographic distribution throughout the continent as an indigenous species and, introduced, as an important plantation species outside its natural range. In this study, we aimed at retrieving TPS genes from the genomes of Norway spruce and, in addition, of representative land plant lineages in order to resolve their phylogenetic relationship. We show that the majority of TPS genes from gymnosperms are distributed within the TPS-d subfamily. As expected, the “DDXXD” and the “RXR” motifs are highly conserved for TPS in general, and the structural characteristics of closely related TPS genes are highly similar. Concrete subfamily membership along with shared structural molecular properties was the main driver of gene expression variation among Norway spruce TPSs, indicating important functional divergence. In this study, the two key factors within TPS gene structure that were related to differential TPS gene expression were found to be motif composition and intron size. Our study is valuable for further in-depth functional evaluation of these additionally uncovered spruce TPSs and will support future efforts in metabolic engineering involving terpenes.


Picea abies Terpene synthase Gene structure Conserved motif Gene expression Functional divergence 


  1. Bailey TL, Boden M, Buske FA, Frith M, Grant CE et al (2009) MEME SUITE: tools for motif discovery and searching. Nucl Acids Res 37(suppl_2):W202–W208Google Scholar
  2. Bateman A, Coin L, Durbin R, Finn RD, Hollich V et al (2004) The Pfam protein families database. Nucl Acids Res 32(suppl_1): D138–D141Google Scholar
  3. Bohlmann J, Keeling CI (2008) Terpenoid biomaterials. Plant J 54(4):656–669PubMedCrossRefGoogle Scholar
  4. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95(8):4126–4133PubMedCrossRefGoogle Scholar
  5. Booth JK, Bohlmann J (2019) Terpenes in Cannabis sativa – from plant genome to humans. Plant Sci 284:67–72PubMedCrossRefGoogle Scholar
  6. Byun-McKay A, Godard K-A, Toudefallah M, Martin DM, Alfaro R et al (2006) Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil. Plant Physiol 140(3):1009–1021PubMedPubMedCentralCrossRefGoogle Scholar
  7. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–1973PubMedPubMedCentralCrossRefGoogle Scholar
  8. Chaw S-M, Liu Y-C, Wu Y-W, Wang H-Y, Lin C-YI et al (2019) Stout camphor tree genome fills gaps in understanding of flowering plant genome evolution. Nat Plants 5(1):63–73PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chen F, Tholl D, Bohlmann J, Pichersky E (2011) The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66(1):212–229PubMedCrossRefGoogle Scholar
  10. Chen C, Xia R, Chen H, He Y (2018) TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface 289660Google Scholar
  11. Christianson DW (2006) Structural biology and chemistry of the terpenoid cyclases. Chem Rev 106(8):3412–3442PubMedCrossRefGoogle Scholar
  12. Dudareva N, Martin D, Kish CM, Kolosova N, Gorenstein N et al (2003) (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily. Plant Cell 15(5):1227–1241PubMedPubMedCentralCrossRefGoogle Scholar
  13. Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleeker PM et al (2011) The tomato terpene synthase gene family. Plant Physiol 157(2):770–789PubMedPubMedCentralCrossRefGoogle Scholar
  14. Finn RD, Clements J, Eddy SR (2011) HMMER web server: interactive sequence similarity searching. Nucl Acids Res 39(suppl_2): W29–W37Google Scholar
  15. Gardner MF (1993) Pinaceae – drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. A. Farjon. Koeltz Scientific Books, D-6240 Königstein, Federal Republic of Germany. 1990. pp. xii + 330; 117 illustrations (mostly line drawings); 124 maps. ISBN 3 87429 298 3. Forming volume 121 of Regnum Vegetabile; ISSN 0080-0694, DM 260. Edinburgh Journal of Botany 50(1): 121-122Google Scholar
  16. Hayashi K-i, Kawaide H, Notomi M, Sakigi Y, Matsuo A et al (2006) Identification and functional analysis of bifunctional ent-kaurene synthase from the moss Physcomitrella patens. FEBS Lett 580(26):6175–6181PubMedCrossRefGoogle Scholar
  17. Hu X-G, Liu H, Jin Y, Sun Y-Q, Li Y et al (2016) De novo transcriptome assembly and characterization for the widespread and stress-tolerant conifer Platycladus orientalis. PLoS ONE 11(2):e0148985PubMedPubMedCentralCrossRefGoogle Scholar
  18. Keeling CI, Weisshaar S, Lin RPC, Bohlmann J (2008) Functional plasticity of paralogous diterpene synthases involved in conifer defense. Proc Natl Acad Sci USA 105(3):1085–1090PubMedCrossRefGoogle Scholar
  19. Keeling CI, Weisshaar S, Ralph SG, Jancsik S, Hamberger B, Dullat HK, Bohlmann J (2011) Transcriptome mining, functional characterization, and phylogeny of a large terpene synthase gene family in spruce (Picea spp.). BMC Plant Biol 11:43Google Scholar
  20. Köksal M, Jin Y, Coates RM, Croteau R, Christianson DW (2011) Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature 469(7328):116–120PubMedCrossRefGoogle Scholar
  21. Külheim C, Padovan A, Hefer C, Krause ST, Köllner TG et al (2015) The Eucalyptus terpene synthase gene family. BMC Genomics 16(1):450PubMedPubMedCentralCrossRefGoogle Scholar
  22. Martin DM, Fäldt J, Bohlmann J (2004) Functional characterization of nine Norway spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiol 135(4):1908–1927PubMedPubMedCentralCrossRefGoogle Scholar
  23. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7(7):1015–1026PubMedPubMedCentralGoogle Scholar
  24. McKay SAB, Hunter WL, Godard K-A, Wang SX, Martin DM et al (2003) Insect attack and wounding induce traumatic resin duct development and gene expression of (-)-pinene synthase in Sitka spruce. Plant Physiol 133(1):368–378PubMedPubMedCentralCrossRefGoogle Scholar
  25. Meng D, Cao Y, Chen T, Abdullah M, Jin Q et al (2019) Evolution and functional divergence of MADS-box genes in Pyrus. Sci Rep 9(1):1266PubMedPubMedCentralCrossRefGoogle Scholar
  26. Mewalal R, Rai DK, Kainer D, Chen F, Külheim C et al (2017) Plant-derived terpenes: a feedstock for specialty biofuels. Trends Biotechnol 35(3):227–240PubMedCrossRefGoogle Scholar
  27. Nakamura T, Yamada KD, Tomii K, Katoh K (2018) Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics 34(14):2490–2492PubMedPubMedCentralCrossRefGoogle Scholar
  28. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274PubMedPubMedCentralCrossRefGoogle Scholar
  29. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y-C et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579PubMedCrossRefGoogle Scholar
  30. Ohta T (2000) Evolution of gene families. Gene 259(1):45–52PubMedCrossRefGoogle Scholar
  31. Phillips MA, Croteau RB (1999) Resin-based defenses in conifers. Trends Plant Sci 4(5):184–190PubMedCrossRefGoogle Scholar
  32. Savard L, Li P, Strauss SH, Chase MW, Michaud M, Bousquet J (1994) Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci USA 91(11):5163–5167PubMedCrossRefGoogle Scholar
  33. Shalev TJ, Yuen MMS, Gesell A, Yuen A, Russell JH et al (2018) An annotated transcriptome of highly inbred Thuja plicata (Cupressaceae) and its utility for gene discovery of terpenoid biosynthesis and conifer defense. Tree Genet Genomes 14(3):35CrossRefGoogle Scholar
  34. Smit SJ, Vivier MA, Young PR (2019) Linking terpene synthases to sesquiterpene metabolism in grapevine flowers. Front Plant Sci.
  35. Stival Sena J, Giguère I, Boyle B, Rigault P, Birol I et al (2014) Evolution of gene structure in the conifer Picea glauca: a comparative analysis of the impact of intron size. BMC Plant Biol 14(1):95PubMedPubMedCentralCrossRefGoogle Scholar
  36. Trapp S, Croteau R (2001a) Defensive resin biosynthesis in conifers. Annu Rev Plant Physiol Plant Mol Biol 52(1):689–724PubMedCrossRefGoogle Scholar
  37. Trapp SC, Croteau RB (2001b) Genomic organization of plant terpene synthases and molecular evolutionary implications. Genetics 158(2):811–832PubMedPubMedCentralGoogle Scholar
  38. Van Bel M, Diels T, Vancaester E, Kreft L, Botzki A et al (2017) PLAZA 4.0: an integrative resource for functional, evolutionary and comparative plant genomics. Nucl Acids Res 46(D1): D1190–D1196Google Scholar
  39. Wegrzyn JL, Lee JM, Tearse BR, Neale DB (2008) TreeGenes: a forest tree genome database. Int J Plant Genomics 412875Google Scholar
  40. Zhou S-S, Xing Z, Liu H, Hu X-G, Gao Q et al (2019) In-depth transcriptome characterization uncovers distinct gene family expansions for Cupressus gigantea important to this long-lived species’ adaptability to environmental cues. BMC Genomics 20(1):213PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Xue-Mei Yan
    • 1
  • Shan-Shan Zhou
    • 1
  • Ilga M. Porth
    • 2
    • 3
    • 4
  • Jian-Feng Mao
    • 1
    Email author
  1. 1.National Engineering Laboratory for Tree Breeding, School of Nature Conservation, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
  2. 2.Département des sciences du bois et de la forêtUniversité LavalQuebec CityCanada
  3. 3.Institute for System and Integrated Biology, Pavillon Charles-Eugène-MarchandUniversité LavalQuebec CityCanada
  4. 4.Centre d’Étude de la ForêtUniversité LavalQuebec CityCanada

Personalised recommendations