Skip to main content

Complexity-Theoretic Aspects of Expanding Cellular Automata

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11525)

Abstract

The expanding cellular automata (XCA) variant of cellular automata is investigated and characterized from a complexity-theoretical standpoint. The respective polynomial-time complexity class is shown to coincide with , that is, the class of decision problems polynomial-time truth-table reducible to problems in . Corollaries on select XCA variants are proven: XCAs with multiple accept and reject states are shown to be polynomial-time equivalent to the original XCA model. Meanwhile, XCAs with diverse acceptance behavior are classified in terms of and the Turing machine polynomial-time class .

Parts of this paper have been submitted [13] in partial fulfillment of the requirements for the degree of Master of Science at the Karlsruhe Institute of Technology (KIT).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-20981-0_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   49.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-20981-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   64.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

Notes

  1. 1.

    That is, \(\delta (\ell ) = a\) for \(\ell (0) = r\) and vice-versa, where \(\delta \) and \(\ell \) are as in Definition 2.

  2. 2.

    This may be accomplished, for example, by using a bit counter in the cells’ states, and having cells wait for a step before transitioning to an accept or reject state if needed.

  3. 3.

    That is to say, each \(c_i\) corresponds to the so-called extended \((\tau - i)\)-neighborhood of a cell of A.

  4. 4.

    In the sense of evaluating to the same truth value under the respective interpretations (see Definition 1).

  5. 5.

    An allusion to the existential states of alternating Turing machines (ATMs).

References

  1. Arrighi, P., Dowek, G.: Causal graph dynamics. Inf. Comput. 223, 78–93 (2013)

    MathSciNet  CrossRef  Google Scholar 

  2. Buss, S.R., Hay, L.: On truth-table reducibility to SAT. Inf. Comput. 91(1), 86–102 (1991)

    MathSciNet  CrossRef  Google Scholar 

  3. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, Shaker Heights, Ohio, USA, pp. 151–158. ACM (1971)

    Google Scholar 

  4. Dantchev, S.S.: Dynamic neighbourhood cellular automata. In: Visions of Computer Science - BCS International Academic Conference, Imperial College, London, UK, 22–24 September 2008, pp. 60–68 (2008)

    Google Scholar 

  5. Dubacq, J.-C.: Different kinds of neighborhood-varying cellular automata. Maîtrise/honour bachelor degree, École normale superiéure de Lyon (1994)

    Google Scholar 

  6. Ibarra, O.H., et al.: Fast parallel language recognition by cellular automata. Theor. Comput. Sci. 41, 231–246 (1985)

    MathSciNet  CrossRef  Google Scholar 

  7. Ilachinski, A., Halpern, P.: Structurally dynamic cellular automata. Complex Syst. 1(3), 503–527 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Kim, S., McCloskey, R.: A characterization of constant-time cellular automata computation. Physica D 45(1–3), 404–419 (1990)

    MathSciNet  CrossRef  Google Scholar 

  9. Kutrib, M.: Cellular automata and language theory. In: Encyclopedia of Complexity and Systems Science, pp. 800–823 (2009)

    CrossRef  Google Scholar 

  10. Kutrib, M., Malcher, A., Wendlandt, M.: Shrinking one-way cellular automata. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 141–154. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47221-7_11

    CrossRef  MATH  Google Scholar 

  11. Ladner, R.E., Lynch, N.A.: Relativization of questions about log space computability. Math. Syst. Theory 10, 19–32 (1976)

    MathSciNet  CrossRef  Google Scholar 

  12. Ladner, R.E., et al.: A comparison of polynomial time reducibilities. Theor. Comput. Sci. 1(2), 103–123 (1975)

    MathSciNet  CrossRef  Google Scholar 

  13. Modanese, A.: Complexity-theoretical aspects of expanding cellular automata. Master’s thesis, Karlsruhe Institute of Technology (2018)

    Google Scholar 

  14. Modanese, A.: Shrinking and expanding one-dimensional cellular automata. Bachelor’s thesis, Karlsruhe Institute of Technology (2016)

    Google Scholar 

  15. Modanese, A., Worsch, T.: Shrinking and expanding cellular automata. In: Cook, M., Neary, T. (eds.) AUTOMATA 2016. LNCS, vol. 9664, pp. 159–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39300-1_13

    CrossRef  MATH  Google Scholar 

  16. Rosenfeld, A.: Picture Languages. Academic Press, New York (1979)

    MATH  Google Scholar 

  17. Rosenfeld, A., Wu, A.Y.: Reconfigurable cellular computers. Inf. Control 50(1), 60–84 (1981)

    CrossRef  Google Scholar 

  18. Rosenfeld, A., et al.: Fast language acceptance by shrinking cellular automata. Inf. Sci. 30(1), 47–53 (1983)

    MathSciNet  CrossRef  Google Scholar 

  19. Smith III, A.R.: Simple computation-universal cellular spaces. J. ACM 18(2), 339–353 (1971)

    MathSciNet  CrossRef  Google Scholar 

  20. Sommerhalder, R., van Westrhenen, S.C.: Parallel language recognition in constant time by cellular automata. Acta Inf. 19, 397–407 (1983)

    MathSciNet  CrossRef  Google Scholar 

  21. Tomita, K., et al.: Graph automata: natural expression of self-reproduction. Phys. D: Nonlinear Phenom. 171(4), 197–210 (2002)

    MathSciNet  CrossRef  Google Scholar 

  22. Wagner, K.W.: Bounded query classes. SIAM J. Comput. 19(5), 833–846 (1990)

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgments

The author would like to thank Thomas Worsch for his mentoring, encouragement, and support during the writing of this paper. The author would also like to thank Dennis Hofheinz for pointing out a crucial mistake in a preliminary version of this paper as well as the anonymous referees for their valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Modanese .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 IFIP International Federation for Information Processing

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Modanese, A. (2019). Complexity-Theoretic Aspects of Expanding Cellular Automata. In: Castillo-Ramirez, A., de Oliveira, P. (eds) Cellular Automata and Discrete Complex Systems. AUTOMATA 2019. Lecture Notes in Computer Science(), vol 11525. Springer, Cham. https://doi.org/10.1007/978-3-030-20981-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20981-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20980-3

  • Online ISBN: 978-3-030-20981-0

  • eBook Packages: Computer ScienceComputer Science (R0)