Abstract
Visuospatial processing is controlled by specialized systems of working memory and is relatively independent of verbal processing. In addition, visual and spatial information also tend to be independently processed. These separate visual and spatial processes result in different cognitive abilities to be controlled by visuospatial processing. Cognitive abilities defined as small-scale visuospatial processing abilities are the most relevant for education in health and natural sciences. In this chapter, we describe several small-scale visuospatial abilities derived from two traditional lines of research: spatial ability and working memory. As such, we address the abilities of mental rotation, mental folding, field independence, spatial working memory, visual working memory, and dual visuospatial working memory. We also describe common tests to measure these abilities in science learning contexts, and give examples showing interactions between the tests. We finish by providing instructional implications and future research directions. Although in this chapter we show that the different abilities controlled by visuospatial processing are interrelated, by stressing their differences we are aiming to fill a research gap. As such, indicating the specific properties of these abilities may help future research on the most suitable ability for a given learning scenario about health and natural sciences.
Keywords
- Visuospatial processing
- Visuo spatial executive working memory
- Spatial ability
- Mental rotation and mental folding
- Small-scale ability
This is a preview of subscription content, access via your institution.
Buying options






References
Aldahmash, A. H., & Abraham, M. R. (2009). Kinetic versus static visuals for facilitating college students’ understanding of organic reaction mechanisms in chemistry. Journal of Chemical Education, 86(12), 1442–1446. https://doi.org/10.1021/ed086p1442.
Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G., & Beck, S. (1996). Predicting environmental learning from spatial abilities: An indirect route. Intelligence, 22(3), 327–355. https://doi.org/10.1016/S0160-2896(96)90026-4.
Ashkenazi, S., & Shapira, S. (2017). Number line estimation under working memory load: Dissociations between working memory subsystems. Trends in Neuroscience and Education, 8–9, 1–9. https://doi.org/10.1016/j.tine.2017.09.001.
Atit, K., Shipley, T. F., & Tikoff, B. (2013). Twisting space: Are rigid and non-rigid mental transformations separate spatial skills? Cognitive Processing, 14(2), 163–173. https://doi.org/10.1007/s10339-013-0550-8.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.
Bauhoff, V., Huff, M., & Schwan, S. (2012). Distance matters: Spatial contiguity effects as trade-off between gaze switches and memory load. Applied Cognitive Psychology, 26(6), 863–871. https://doi.org/10.1002/acp.2887.
Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., et al. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, Space, and Environmental Medicine, 78(5), B231–B244.
Berney, S., Bétrancourt, M., Molinari, G., & Hoyek, N. (2015). How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models. Anatomical Sciences Education, 8(5), 452–462. https://doi.org/10.1002/ase.1524.
Bethell-Fox, C. E., & Shepard, R. N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 12–23. https://doi.org/10.1037/0096-1523.14.1.12.
Blacker, K. J., Curby, K. M., Klobusicky, E., & Chein, J. M. (2014). Effects of action video game training on visual working memory. Journal of Experimental Psychology. Human Perception and Performance, 40(5), 1992–2004. https://doi.org/10.1037/a0037556.
Bodner, G. M., & Guay, R. B. (1997). The Purdue Visualization of Rotations Test. The Chemical Educator, 2(4), 1–17. https://doi.org/10.1007/s00897970138a.
Bruyer, R., & Scailquin, J.-C. (1998). The visuospatial sketchpad for mental images: Testing the multicomponent model of working memory. Acta Psychologica, 98(1), 17–36. https://doi.org/10.1016/S0001-6918(97)00053-X.
Buckley, J., Seery, N., & Canty, D. (2018). A heuristic framework of spatial ability: A review and synthesis of spatial factor literature to support its translation into STEM education. Educational Psychology Review, 30(3), 947–972. https://doi.org/10.1007/s10648-018-9432-z.
Castro-Alonso, J. C., & Fiorella, L. (this volume). Interactive science multimedia and visuospatial processing. In J. C. Castro-Alonso (Ed.), Visuospatial processing for education in health and natural sciences (pp. 145–173). Cham: Springer. https://doi.org/10.1007/978-3-030-20969-8_6.
Castro-Alonso, J. C., & Jansen, P. (this volume). Sex differences in visuospatial processing. In J. C. Castro-Alonso (Ed.), Visuospatial processing for education in health and natural sciences (pp. 81–110). Cham: Springer. https://doi.org/10.1007/978-3-030-20969-8_4.
Castro-Alonso, J. C., & Uttal, D. H. (2019). Spatial ability for university biology education. In S. Nazir, A.-M. Teperi, & A. Polak-Sopińska (Eds.), Advances in human factors in training, education, and learning sciences: Proceedings of the AHFE 2018 International Conference on Human Factors in Training, Education, and Learning Sciences (pp. 283–291). Cham: Springer. https://doi.org/10.1007/978-3-319-93882-0_28.
Castro-Alonso, J. C., & Uttal, D. H. (this volume). Science education and visuospatial processing. In J. C. Castro-Alonso (Ed.), Visuospatial processing for education in health and natural sciences (pp. 53–79). Cham: Springer. https://doi.org/10.1007/978-3-030-20969-8_3.
Castro-Alonso, J. C., Ayres, P., & Paas, F. (2014). Learning from observing hands in static and animated versions of non-manipulative tasks. Learning and Instruction, 34, 11–21. https://doi.org/10.1016/j.learninstruc.2014.07.005.
Castro-Alonso, J. C., Ayres, P., & Paas, F. (2018a). Computerized and adaptable tests to measure visuospatial abilities in STEM students. In T. Andre (Ed.), Advances in human factors in training, education, and learning sciences: Proceedings of the AHFE 2017 International Conference on Human Factors in Training, Education, and Learning Sciences (pp. 337–349). Cham: Springer. https://doi.org/10.1007/978-3-319-60018-5_33.
Castro-Alonso, J. C., Ayres, P., Wong, M., & Paas, F. (2018b). Learning symbols from permanent and transient visual presentations: Don’t overplay the hand. Computers & Education, 116, 1–13. https://doi.org/10.1016/j.compedu.2017.08.011.
Castro-Alonso, J. C., Ayres, P., & Paas, F. (this volume-a). VAR: A battery of computer-based instruments to measure visuospatial processing. In J. C. Castro-Alonso (Ed.), Visuospatial processing for education in health and natural sciences (pp. 207–229). Cham: Springer. https://doi.org/10.1007/978-3-030-20969-8_8.
Castro-Alonso, J. C., Ayres, P., & Sweller, J. (this volume-b). Instructional visualizations, cognitive load theory, and visuospatial processing. In J. C. Castro-Alonso (Ed.), Visuospatial processing for education in health and natural sciences (pp. 111–143). Cham: Springer. https://doi.org/10.1007/978-3-030-20969-8_5.
Castro-Alonso, J. C., Paas, F., & Ginns, P. (this volume-c). Embodied cognition, science education, and visuospatial processing. In J. C. Castro-Alonso (Ed.), Visuospatial processing for education in health and natural sciences (pp. 175–205). Cham: Springer. https://doi.org/10.1007/978-3-030-20969-8_7.
Choi, J., & L’Hirondelle, N. (2005). Object location memory: A direct test of the verbal memory hypothesis. Learning and Individual Differences, 15(3), 237–245. https://doi.org/10.1016/j.lindif.2005.02.001.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Erlbaum.
Cornoldi, C., & Mammarella, I. C. (2008). A comparison of backward and forward spatial spans. The Quarterly Journal of Experimental Psychology, 61(5), 674–682. https://doi.org/10.1080/17470210701774200.
Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450–466. https://doi.org/10.1016/S0022-5371(80)90312-6.
Darling, S., Della Sala, S., Logie, R. H., & Cantagallo, A. (2006). Neuropsychological evidence for separating components of visuo–spatial working memory. Journal of Neurology, 253(2), 176–180. https://doi.org/10.1007/s00415-005-0944-3.
Della Sala, S., Gray, C., Baddeley, A., Allamano, N., & Wilson, L. (1999). Pattern span: A tool for unwelding visuo–spatial memory. Neuropsychologia, 37(10), 1189–1199. https://doi.org/10.1016/S0028-3932(98)00159-6.
Eals, M., & Silverman, I. (1994). The Hunter-Gatherer theory of spatial sex differences: Proximate factors mediating the female advantage in recall of object arrays. Ethology and Sociobiology, 15(2), 95–105. https://doi.org/10.1016/0162-3095(94)90020-5.
Eitel, A., Bender, L., & Renkl, A. (2019). Are seductive details seductive only when you think they are relevant? An experimental test of the moderating role of perceived relevance. Applied Cognitive Psychology, 33(1), 20–30. https://doi.org/10.1002/acp.3479.
Ekstrom, R. B., French, J. W., Harman, H. H., & Dermen, D. (1976). Kit of factor-referenced cognitive tests. Princeton: Educational Testing Service.
Epting, L. K., & Overman, W. H. (1998). Sex-sensitive tasks in men and women: A search for performance fluctuations across the menstrual cycle. Behavioral Neuroscience, 112(6), 1304–1317. https://doi.org/10.1037/0735-7044.112.6.1304.
Fiorella, L., & Mayer, R. E. (2017). Spontaneous spatial strategy use in learning from scientific text. Contemporary Educational Psychology, 49, 66–79. https://doi.org/10.1016/j.cedpsych.2017.01.002.
Foster, J. L., Harrison, T. L., Hicks, K. L., Draheim, C., Redick, T. S., & Engle, R. W. (2017). Do the effects of working memory training depend on baseline ability level? Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(11), 1677–1689. https://doi.org/10.1037/xlm0000426.
Garg, A. X., Norman, G., & Sperotable, L. (2001). How medical students learn spatial anatomy. The Lancet, 357(9253), 363–364. https://doi.org/10.1016/S0140-6736(00)03649-7.
Gibbons, R. D., Baker, R. J., & Skinner, D. B. (1986). Field articulation testing: A predictor of technical skills in surgical residents. Journal of Surgical Research, 41(1), 53–57. https://doi.org/10.1016/0022-4804(86)90008-9.
Gold, A. U., Pendergast, P. M., Ormand, C. J., Budd, D. A., & Mueller, K. J. (2018). Improving spatial thinking skills among undergraduate geology students through short online training exercises. International Journal of Science Education, 40(18), 2205–2225. https://doi.org/10.1080/09500693.2018.1525621.
Hale, S., Rose, N. S., Myerson, J., Strube, M. J., Sommers, M., Tye-Murray, N., et al. (2011). The structure of working memory abilities across the adult life span. Psychology and Aging, 26(1), 92–110. https://doi.org/10.1037/a0021483.
Hambrick, D. Z., Libarkin, J. C., Petcovic, H. L., Baker, K. M., Elkins, J., Callahan, C. N., et al. (2012). A test of the circumvention-of-limits hypothesis in scientific problem solving: The case of geological bedrock mapping. Journal of Experimental Psychology: General, 141(3), 397–403. https://doi.org/10.1037/a0025927.
Hammond, A. G., Murphy, E. M., Silverman, B. M., Bernas, R. S., & Nardi, D. (2019). No environmental context-dependent effect, but interference, of physical activity on object location memory. Cognitive Processing, 20(1), 31–43. https://doi.org/10.1007/s10339-018-0875-4.
Harrison, T. L., Shipstead, Z., Hicks, K. L., Hambrick, D. Z., Redick, T. S., & Engle, R. W. (2013). Working memory training may increase working memory capacity but not fluid intelligence. Psychological Science, 24(12), 2409–2419. https://doi.org/10.1177/0956797613492984.
Hausmann, M., Schoofs, D., Rosenthal, H. E. S., & Jordan, K. (2009). Interactive effects of sex hormones and gender stereotypes on cognitive sex differences—A psychobiosocial approach. Psychoneuroendocrinology, 34(3), 389–401. https://doi.org/10.1016/j.psyneuen.2008.09.019.
Hautzel, H., Mottaghy, F. M., Schmidt, D., Zemb, M., Shah, N. J., Müller-Gärtner, H.-W., et al. (2002). Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neuroscience Letters, 323(2), 156–160. https://doi.org/10.1016/S0304-3940(02)00125-8.
Hegarty, M. (2018). Ability and sex differences in spatial thinking: What does the mental rotation test really measure? Psychonomic Bulletin & Review, 25(3), 1212–1219. https://doi.org/10.3758/s13423-017-1347-z.
Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175–191. https://doi.org/10.1016/j.intell.2003.12.001.
Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34(2), 151–176. https://doi.org/10.1016/j.intell.2005.09.005.
Hegarty, M., Keehner, M., Khooshabeh, P., & Montello, D. R. (2009). How spatial abilities enhance, and are enhanced by, dental education. Learning and Individual Differences, 19(1), 61–70. https://doi.org/10.1016/j.lindif.2008.04.006.
Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? The Quarterly Journal of Experimental Psychology, 61(5), 683–689. https://doi.org/10.1080/17470210701822967.
Hinze, S. R., Williamson, V. M., Shultz, M. J., Williamson, K. C., Deslongchamps, G., & Rapp, D. N. (2013). When do spatial abilities support student comprehension of STEM visualizations? Cognitive Processing, 14(2), 129–142. https://doi.org/10.1007/s10339-013-0539-3.
Huk, T., & Steinke, M. (2007). Learning cell biology with close-up views or connecting lines: Evidence for the structure mapping effect. Computers in Human Behavior, 23(3), 1089–1104. https://doi.org/10.1016/j.chb.2006.10.004.
Huk, T., Steinke, M., & Floto, C. (2010). The educational value of visual cues and 3D-representational format in a computer animation under restricted and realistic conditions. Instructional Science, 38(5), 455–469. https://doi.org/10.1007/s11251-009-9116-7.
Hunt, E. B., Pellegrino, J. W., Frick, R. W., Farr, S. A., & Alderton, D. (1988). The ability to reason about movement in the visual field. Intelligence, 12(1), 77–100. https://doi.org/10.1016/0160-2896(88)90024-4.
Hyun, J.-S., & Luck, S. J. (2007). Visual working memory as the substrate for mental rotation. Psychonomic Bulletin & Review, 14(1), 154–158. https://doi.org/10.3758/BF03194043.
Imhof, B., Scheiter, K., Edelmann, J., & Gerjets, P. (2013). Learning about locomotion patterns: Effective use of multiple pictures and motion-indicating arrows. Computers & Education, 65, 45–55. https://doi.org/10.1016/j.compedu.2013.01.017.
Jang, S., Vitale, J. M., Jyung, R. W., & Black, J. B. (2017). Direct manipulation is better than passive viewing for learning anatomy in a three-dimensional virtual reality environment. Computers & Education, 106, 150–165. https://doi.org/10.1016/j.compedu.2016.12.009.
Jaušovec, N., & Jaušovec, K. (2012). Working memory training: Improving intelligence – Changing brain activity. Brain and Cognition, 79(2), 96–106. https://doi.org/10.1016/j.bandc.2012.02.007.
Kail, R. (1986). The impact of extended practice on rate of mental rotation. Journal of Experimental Child Psychology, 42(3), 378–391. https://doi.org/10.1016/0022-0965(86)90032-9.
Kalet, A. L., Song, H. S., Sarpel, U., Schwartz, R. N., Brenner, J., Ark, T. K., et al. (2012). Just enough, but not too much interactivity leads to better clinical skills performance after a computer assisted learning module. Medical Teacher, 34(10), 833–839. https://doi.org/10.3109/0142159X.2012.706727.
Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W., & Engle, R. W. (2004). The generality of working memory capacity: A latent-variable approach to verbal and visuospatial memory span and reasoning. Journal of Experimental Psychology: General, 133(2), 189–217. https://doi.org/10.1037/0096-3445.133.2.189.
Keehner, M., Tendick, F., Meng, M. V., Anwar, H. P., Hegarty, M., Stoller, M. L., et al. (2004). Spatial ability, experience, and skill in laparoscopic surgery. The American Journal of Surgery, 188(1), 71–75. https://doi.org/10.1016/j.amjsurg.2003.12.059.
Kirchner, W. K. (1958). Age differences in short-term retention of rapidly changing information. Journal of Experimental Psychology, 55(4), 352–358. https://doi.org/10.1037/h0043688.
Könen, T., Strobach, T., & Karbach, J. (2016). Working memory. In T. Strobach & J. Karbach (Eds.), Cognitive training: An overview of features and applications (pp. 59–68). Cham: Springer. https://doi.org/10.1007/978-3-319-42662-4_6.
Kozhevnikov, M., & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745–756. https://doi.org/10.3758/bf03200477.
Kozhevnikov, M., & Thornton, R. (2006). Real-time data display, spatial visualization ability, and learning force and motion concepts. Journal of Science Education and Technology, 15(1), 111–132. https://doi.org/10.1007/s10956-006-0361-0.
Kozhevnikov, M., Motes, M. A., & Hegarty, M. (2007). Spatial visualization in physics problem solving. Cognitive Science, 31(4), 549–579. https://doi.org/10.1080/15326900701399897.
Kozhevnikov, M., Blazhenkova, O., & Becker, M. (2010). Trade-off in object versus spatial visualization abilities: Restriction in the development of visual-processing resources. Psychonomic Bulletin & Review, 17(1), 29–35. https://doi.org/10.3758/pbr.17.1.29.
Kozhevnikov, M., Schloerb, D. W., Blazhenkova, O., Koo, S., Karimbux, N., Donoff, R. B., et al. (2013). Egocentric versus allocentric spatial ability in dentistry and haptic virtual reality training. Applied Cognitive Psychology, 27(3), 373–383. https://doi.org/10.1002/acp.2915.
Kühl, T., Stebner, F., Navratil, S. C., Fehringer, B. C. O. F., & Münzer, S. (2018). Text information and spatial abilities in learning with different visualizations formats. Journal of Educational Psychology, 110(4), 561–577. https://doi.org/10.1037/edu0000226.
Law, D. J., Morrin, K. A., & Pellegrino, J. W. (1995). Training effects and working memory contributions to skill acquisition in a complex coordination task. Learning and Individual Differences, 7(3), 207–234. https://doi.org/10.1016/1041-6080(95)90011-X.
Lee, D. Y., & Shin, D.-H. (2011). Effects of spatial ability and richness of motion cue on learning in mechanically complex domain. Computers in Human Behavior, 27(5), 1665–1674. https://doi.org/10.1016/j.chb.2011.02.005.
Lejbak, L., Crossley, M., & Vrbancic, M. (2011). A male advantage for spatial and object but not verbal working memory using the n-back task. Brain and Cognition, 76(1), 191–196. https://doi.org/10.1016/j.bandc.2010.12.002.
Linn, M. C., & Kyllonen, P. (1981). The field dependence–independence construct: Some, one, or none. Journal of Educational Psychology, 73(2), 261–273. https://doi.org/10.1037/0022-0663.73.2.261.
Lord, T. R. (1990). Enhancing learning in the life sciences through spatial perception. Innovative Higher Education, 15(1), 5–16. https://doi.org/10.1007/BF00889733.
McEvoy, L. K., Smith, M. E., & Gevins, A. (1998). Dynamic cortical networks of verbal and spatial working memory: Effects of memory load and task practice. Cerebral Cortex, 8(7), 563–574. https://doi.org/10.1093/cercor/8.7.563.
McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889–918. https://doi.org/10.1037/0033-2909.86.5.889.
McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10. https://doi.org/10.1016/j.intell.2008.08.004.
Michael, W. B., Guilford, J. P., Fruchter, B., & Zimmerman, W. S. (1957). The description of spatial-visualization abilities. Educational and Psychological Measurement, 17(2), 185–199. https://doi.org/10.1177/001316445701700202.
Miller, D. I., & Halpern, D. F. (2013). Can spatial training improve long-term outcomes for gifted STEM undergraduates? Learning and Individual Differences, 26, 141–152. https://doi.org/10.1016/j.lindif.2012.03.012.
Milner, B. (1971). Interhemispheric differences in the localization of psychological processes in man. British Medical Bulletin, 27(3), 272–277.
Minear, M., Brasher, F., Guerrero, C. B., Brasher, M., Moore, A., & Sukeena, J. (2016). A simultaneous examination of two forms of working memory training: Evidence for near transfer only. Memory & Cognition, 44(7), 1014–1037. https://doi.org/10.3758/s13421-016-0616-9.
Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, M. (2001a). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology: General, 130(4), 621–640. https://doi.org/10.1037//0096-3445.130.4.621.
Miyake, A., Witzki, A. H., & Emerson, M. J. (2001b). Field dependence–independence from a working memory perspective: A dual-task investigation of the Hidden Figures Test. Memory, 9(4–6), 445–457. https://doi.org/10.1080/09658210143000029.
Ness, D., Farenga, S. J., & Garofalo, S. G. (2017). Spatial intelligence: Why it matters from birth through the lifespan. New York: Routledge.
Örün, Ö., & Akbulut, Y. (2019). Effect of multitasking, physical environment and electroencephalography use on cognitive load and retention. Computers in Human Behavior, 92, 216–229. https://doi.org/10.1016/j.chb.2018.11.027.
Pearson, J. L., & Ialongo, N. S. (1986). The relationship between spatial ability and environmental knowledge. Journal of Environmental Psychology, 6(4), 299–304. https://doi.org/10.1016/S0272-4944(86)80003-2.
Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse Mental Rotations Test: Different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58. https://doi.org/10.1006/brcg.1995.1032.
Phillips, W. A., & Baddeley, A. (1971). Reaction time and short-term visual memory. Psychonomic Science, 22(2), 73–74. https://doi.org/10.3758/BF03332500.
Piburn, M. D., Reynolds, S. J., McAuliffe, C., Leedy, D. E., Birk, J. P., & Johnson, J. K. (2005). The role of visualization in learning from computer-based images. International Journal of Science Education, 27(5), 513–527. https://doi.org/10.1080/09500690412331314478.
Pilegard, C., & Mayer, R. E. (2018). Game over for Tetris as a platform for cognitive skill training. Contemporary Educational Psychology, 54, 29–41. https://doi.org/10.1016/j.cedpsych.2018.04.003.
Postma, A., Jager, G., Kessels, R. P. C., Koppeschaar, H. P. F., & van Honk, J. (2004). Sex differences for selective forms of spatial memory. Brain and Cognition, 54(1), 24–34. https://doi.org/10.1016/S0278-2626(03)00238-0.
Pribyl, J. R., & Bodner, G. M. (1987). Spatial ability and its role in organic chemistry: A study of four organic courses. Journal of Research in Science Teaching, 24(3), 229–240. https://doi.org/10.1002/tea.3660240304.
Provo, J., Lamar, C., & Newby, T. (2002). Using a cross section to train veterinary students to visualize anatomical structures in three dimensions. Journal of Research in Science Teaching, 39(1), 10–34. https://doi.org/10.1002/tea.10007.
Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., et al. (2013). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology: General, 142(2), 359–379. https://doi.org/10.1037/a0029082.
Resnick, I., & Shipley, T. F. (2013). Breaking new ground in the mind: An initial study of mental brittle transformation and mental rigid rotation in science experts. Cognitive Processing, 14(2), 143–152. https://doi.org/10.1007/s10339-013-0548-2.
Resnick, S. M., Berenbaum, S. A., Gottesman, I. I., & Bouchard, T. J. (1986). Early hormonal influences on cognitive functioning in congenital adrenal hyperplasia. Developmental Psychology, 22(2), 191–198. https://doi.org/10.1037/0012-1649.22.2.191.
Rudkin, S. J., Pearson, D. G., & Logie, R. H. (2007). Executive processes in visual and spatial working memory tasks. The Quarterly Journal of Experimental Psychology, 60(1), 79–100. https://doi.org/10.1080/17470210600587976.
Ruisoto, P., Juanes, J. A., & Prats, A. (2014). Enhancing neuroanatomy education using computer-based instructional material. Computers in Human Behavior, 31, 446–452. https://doi.org/10.1016/j.chb.2013.03.005.
Sanchez, C. A. (2012). Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains. Psychonomic Bulletin & Review, 19(1), 58–65. https://doi.org/10.3758/s13423-011-0177-7.
Sanchez, C. A., & Wiley, J. (2014). The role of dynamic spatial ability in geoscience text comprehension. Learning and Instruction, 31, 33–45. https://doi.org/10.1016/j.learninstruc.2013.12.007.
Sanchez, C. A., & Wiley, J. (2017). Dynamic visuospatial ability and learning from dynamic visualizations. In R. Lowe & R. Ploetzner (Eds.), Learning from dynamic visualization: Innovations in research and application (pp. 155–176). Cham: Springer. https://doi.org/10.1007/978-3-319-56204-9_7.
Schmiedek, F., Hildebrandt, A., Lövdén, M., Wilhelm, O., & Lindenberger, U. (2009). Complex span versus updating tasks of working memory: The gap is not that deep. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(4), 1089–1096. https://doi.org/10.1037/a0015730.
Schwarb, H., Nail, J., & Schumacher, E. H. (2016). Working memory training improves visual short-term memory capacity. Psychological Research, 80(1), 128–148. https://doi.org/10.1007/s00426-015-0648-y.
Seufert, T., Schütze, M., & Brünken, R. (2009). Memory characteristics and modality in multimedia learning: An aptitude-treatment-interaction study. Learning and Instruction, 19(1), 28–42. https://doi.org/10.1016/j.learninstruc.2008.01.002.
Shah, P., & Miyake, A. (1996). The separability of working memory resources for spatial thinking and language processing: An individual differences approach. Journal of Experimental Psychology: General, 125(1), 4–27. https://doi.org/10.1037/0096-3445.125.1.4.
Shepard, R. N., & Feng, C. (1972). A chronometric study of mental paper folding. Cognitive Psychology, 3(2), 228–243. https://doi.org/10.1016/0010-0285(72)90005-9.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703. https://doi.org/10.2307/1731476.
Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36(2), 261–268. https://doi.org/10.1007/s10508-006-9168-6.
Smirni, P., Villardita, C., & Zappalà, G. (1983). Influence of different paths on spatial memory performance in the Block-Tapping Test. Journal of Clinical Neuropsychology, 5(4), 355–359. https://doi.org/10.1080/01688638308401184.
Stephenson, C. L., & Halpern, D. F. (2013). Improved matrix reasoning is limited to training on tasks with a visuospatial component. Intelligence, 41(5), 341–357. https://doi.org/10.1016/j.intell.2013.05.006.
Stericker, A., & LeVesconte, S. (1982). Effect of brief training on sex-related differences in visual–spatial skill. Journal of Personality and Social Psychology, 43(5), 1018–1029. https://doi.org/10.1037/0022-3514.43.5.1018.
Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17(2), 219–234. https://doi.org/10.1016/j.learninstruc.2007.01.012.
Stull, A. T., Hegarty, M., & Mayer, R. E. (2009). Getting a handle on learning anatomy with interactive three-dimensional graphics. Journal of Educational Psychology, 101(4), 803–816. https://doi.org/10.1037/a0016849.
Stull, A. T., Fiorella, L., Gainer, M. J., & Mayer, R. E. (2018). Using transparent whiteboards to boost learning from online STEM lectures. Computers & Education, 120, 146–159. https://doi.org/10.1016/j.compedu.2018.02.005.
Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22(7), 996–1013. https://doi.org/10.1002/acp.1420.
Thurstone, L. L. (1950). Some primary abilities in visual thinking. Proceedings of the American Philosophical Society, 94(6), 517–521.
Unsworth, N., Heitz, R. P., Schrock, J. C., & Engle, R. W. (2005). An automated version of the operation span task. Behavior Research Methods, 37(3), 498–505. https://doi.org/10.3758/bf03192720.
Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., et al. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402. https://doi.org/10.1037/a0028446.
Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47(2), 599–604. https://doi.org/10.2466/pms.1978.47.2.599.
Vandierendonck, A., Kemps, E., Fastame, M. C., & Szmalec, A. (2004). Working memory components of the Corsi blocks task. British Journal of Psychology, 95(1), 57–79. https://doi.org/10.1348/000712604322779460.
Vecchi, T., & Richardson, J. T. E. (2001). Measures of visuospatial short-term memory: The Knox Cube Imitation Test and the Corsi Blocks Test compared. Brain and Cognition, 46(1), 291–295. https://doi.org/10.1016/S0278-2626(01)80086-5.
Vergauwe, E., Barrouillet, P., & Camos, V. (2010). Do mental processes share a domain-general resource? Psychological Science, 21(3), 384–390. https://doi.org/10.1177/0956797610361340.
Wang, L., Cohen, A. S., & Carr, M. (2014). Spatial ability at two scales of representation: A meta-analysis. Learning and Individual Differences, 36, 140–144. https://doi.org/10.1016/j.lindif.2014.10.006.
Wanzel, K. R., Hamstra, S. J., Anastakis, D. J., Matsumoto, E. D., & Cusimano, M. D. (2002). Effect of visual-spatial ability on learning of spatially-complex surgical skills. The Lancet, 359(9302), 230–231. https://doi.org/10.1016/S0140-6736(02)07441-X.
Wiegmann, D. A., Dansereau, D. F., McCagg, E. C., Rewey, K. L., & Pitre, U. (1992). Effects of knowledge map characteristics on information processing. Contemporary Educational Psychology, 17(2), 136–155. https://doi.org/10.1016/0361-476X(92)90055-4.
Wiley, J. (2019). Picture this! Effects of photographs, diagrams, animations, and sketching on learning and beliefs about learning from a geoscience text. Applied Cognitive Psychology, 33(1), 9–19. https://doi.org/10.1002/acp.3495.
Wilson, L., Scott, J. H., & Power, K. G. (1987). Developmental differences in the span of visual memory for pattern. British Journal of Developmental Psychology, 5(3), 249–255. https://doi.org/10.1111/j.2044-835X.1987.tb01060.x.
Witkin, H. A. (1949). The nature and importance of individual differences in perception. Journal of Personality, 18(2), 145–170. https://doi.org/10.1111/j.1467-6494.1949.tb01237.x.
Wong, M., Castro-Alonso, J. C., Ayres, P., & Paas, F. (2018). Investigating gender and spatial measurements in instructional animation research. Computers in Human Behavior, 89, 446–456. https://doi.org/10.1016/j.chb.2018.02.017.
Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15(4), 763–771. https://doi.org/10.3758/PBR.15.4.763.
Acknowledgments
Support from PIA-CONICYT Basal Funds for Centers of Excellence Project FB0003 is gratefully acknowledged. The first author is thankful to Enrique Castro and Mariana Poblete for their assistance.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Castro-Alonso, J.C., Atit, K. (2019). Different Abilities Controlled by Visuospatial Processing. In: Castro-Alonso, J. (eds) Visuospatial Processing for Education in Health and Natural Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-20969-8_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-20969-8_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20968-1
Online ISBN: 978-3-030-20969-8
eBook Packages: EducationEducation (R0)