Skip to main content

Playing at the Edge of Criticality: Expanded Whole-Brain Repertoire of Connectome-Harmonics

  • Chapter
  • First Online:
The Functional Role of Critical Dynamics in Neural Systems

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 11))

Abstract

In order for us to survive, our behaviour has to be perched somewhere between stability and flexibility, or between exploitation and exploration of available resources. This requires the underlying spatiotemporal brain dynamics to be delicately balanced between order and disorder, drawing upon a large repertoire of available brain states. Beyond survival, in order to thrive the brain has to be sufficiently flexible to be able to seek novel trajectories and expand the dynamical repertoire. Here we propose that a key ingredient could be play, the active exploration of novelty beyond exploiting existing potentially scarce resources. Using a novel analysis method called ‘connectome harmonics’ we not only demonstrate that brain activity resides close to criticality—at the delicate balance between order (stability) and disorder (flexibility)—but this whole-brain criticality is also intrinsically linked to oscillatory brain dynamics. We show that compared to wakefulness, other conscious states are related to different connectome-harmonic repertoires and differ in their proximity to criticality, where the critical regime may enhance the ability to flexibly seek new brain states. In particular, we propose that these brain dynamics may underlie the creative process found in play and improvisation, and as such may shed new light on discovering how the brain optimizes the balance between exploitation and exploration needed for behavioural flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chialvo, D.R.: Critical brain networks. Phys. A Stat. Mech. Appl. 340, 756–765 (2004)

    Article  Google Scholar 

  2. Plenz, D.: Viewpoint: the critical brain. Physics 6, 47 (2013)

    Article  Google Scholar 

  3. Shew, W.L., Plenz, D.: The functional benefits of criticality in the cortex. Neuroscientist 19, 88–100 (2013)

    Article  Google Scholar 

  4. Priesemann, V., et al.: Spike avalanches in vivo suggest a driven, slightly subcritical brain state. Front. Syst. Neurosci. 8, 108 (2014)

    Google Scholar 

  5. Hesse, J., Gross, T.: Self-organized criticality as a fundamental property of neural systems. Front. Syst. Neurosci. 8, 166 (2015)

    Google Scholar 

  6. Kitzbichler, M.G., Smith, M.L., Christensen, S.R., Bullmore, E.: Broadband criticality of human brain network synchronization. PLoS Comput. Biol. 5, e1000314 (2009)

    Article  Google Scholar 

  7. Tagliazucchi, E., et al.: Criticality in large-scale brain fMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3, 15 (2012)

    Google Scholar 

  8. Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J.: Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21, 1370–1377 (2001)

    Article  CAS  Google Scholar 

  9. Allegrini, P., Paradisi, P., Menicucci, D., Gemignani, A.: Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Front. Physiol. 1, 128 (2010)

    Article  Google Scholar 

  10. Palva, J.M., et al.: Neuronal long-range temporal correlations and avalanche dynamics are correlated with behavioral scaling laws. Proc. Natl. Acad. Sci. 110, 3585–3590 (2013)

    Article  CAS  Google Scholar 

  11. Shriki, O., et al.: Neuronal avalanches in the resting MEG of the human brain. J. Neurosci. 33, 7079–7090 (2013)

    Article  CAS  Google Scholar 

  12. Priesemann, V., Valderrama, M., Wibral, M., Le Van Quyen, M.: Neuronal avalanches differ from wakefulness to deep sleep-evidence from intracranial depth recordings in humans. PLoS Comput. Biol. 9, e1002985 (2013)

    Article  CAS  Google Scholar 

  13. Deco, G., Jirsa, V.K.: Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. J. Neurosci. 32, 3366–3375 (2012)

    Article  CAS  Google Scholar 

  14. Haimovici, A., Tagliazucchi, E., Balenzuela, P., Chialvo, D.R.: Brain organization into resting state networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett. 110, 178101 (2013)

    Article  Google Scholar 

  15. Stumpf, M.P., Porter, M.A.: Critical truths about power laws. Science 335, 665–666 (2012)

    Article  CAS  Google Scholar 

  16. Beggs, J.M., Timme, N.: Being critical of criticality in the brain. Front. Physiol. 3, 163 (2012)

    Article  Google Scholar 

  17. He, B.J.: Scale-free brain activity: past, present, and future. Trends Cogn. Sci. 18, 480–487 (2014)

    Article  Google Scholar 

  18. Atasoy, S., Donnelly, I., Pearson, J.: Human brain networks function in connectome-specific harmonic waves. Nat. Commun. 7, 10340 (2016)

    Google Scholar 

  19. Atasoy, S., Deco, G., Kringelbach, M.L., Pearson, J.: Harmonic brain modes: a unifying framework for linking space and time in brain dynamics. Neuroscientist 24, 277–293 (2017). https://doi.org/10.1177/1073858417728032

    Article  Google Scholar 

  20. Buzsáki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  CAS  Google Scholar 

  21. Fox, M.D., et al.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 102, 9673–9678 (2005)

    Article  CAS  Google Scholar 

  22. Fox, M.D., Raichle, M.E.: Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8, 700–711 (2007)

    Article  CAS  Google Scholar 

  23. Deco, G., Jirsa, V.K., McIntosh, A.R.: Emerging concepts for the dynamical organization of resting-state activity in the brain. Nat. Rev. Neurosci. 12, 43 (2011)

    Article  CAS  Google Scholar 

  24. Chladni, E.F.F.: Die akustik. Breitkopf & Härtel (1830)

    Google Scholar 

  25. Roos, C.: Quantum physics: simulating magnetism. Nature 484, 461–462 (2012)

    Article  CAS  Google Scholar 

  26. Britton, J.W., et al.: Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins. Nature 484, 489–492 (2012)

    Article  CAS  Google Scholar 

  27. Schrödinger, E.: An undulatory theory of the mechanics of atoms and molecules. Phys. Rev. 28, 1049 (1926)

    Article  Google Scholar 

  28. Moon, C.R., et al.: Quantum phase extraction in isospectral electronic nanostructures. Science 319, 782–787 (2008)

    Article  CAS  Google Scholar 

  29. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 237, 37–72 (1952)

    Google Scholar 

  30. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329, 1616–1620 (2010)

    Article  CAS  Google Scholar 

  31. Robinson, P.A., et al.: Eigenmodes of brain activity: neural field theory predictions and comparison with experiment. NeuroImage 142, 79–98 (2016)

    Article  CAS  Google Scholar 

  32. Stewart, I.: Mathematics: holes and hot spots. Nature 401, 863–865 (1999)

    Article  CAS  Google Scholar 

  33. Chung, F.R.: Spectral Graph Theory, vol. 92. American Mathematical Soc., Providence (1997)

    Google Scholar 

  34. Strogatz, S.H.: Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life. Hachette, UK (2012)

    Google Scholar 

  35. Stanley, H.E.: Scaling, universality, and renormalization: three pillars of modern critical phenomena. Rev. Mod. Phys. 71, S358 (1999)

    Article  CAS  Google Scholar 

  36. Kadanoff, L.P.: From Order to Chaos II: Essays: Critical, Chaotic and Otherwise. World Scientific (1999)

    Google Scholar 

  37. Marković, D., Gros, C.: Power laws and self-organized criticality in theory and nature. Phys. Rep. 536, 41–74 (2014)

    Article  Google Scholar 

  38. Beggs, J.M.: The criticality hypothesis: how local cortical networks might optimize information processing. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 366, 329–343 (2008)

    Article  Google Scholar 

  39. Brochini, L., et al.: Phase transitions and self-organized criticality in networks of stochastic spiking neurons. Sci. Rep. 6, 35831 (2016)

    Article  CAS  Google Scholar 

  40. Breakspear, M.: Dynamic models of large-scale brain activity. Nat. Neurosci. 20, 340 (2017)

    Article  CAS  Google Scholar 

  41. Deco, G., Kringelbach, M.L.: Metastability and coherence: extending the communication through coherence hypothesis using a whole-brain computational perspective. Trends Neurosci 39, 125–135 (2016)

    Article  CAS  Google Scholar 

  42. Cabral, J., et al.: Exploring mechanisms of spontaneous functional connectivity in meg: how delayed network interactions lead to structured amplitude envelopes of band-pass filtered oscillations. Neuroimage 90, 423–435 (2014)

    Article  Google Scholar 

  43. Cabral, J., Kringelbach, M.L., Deco, G.: Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: models and mechanisms. NeuroImage 160, 84–96 (2017)

    Article  Google Scholar 

  44. Carhart-Harris, R.L., et al.: The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8 (2014)

    Google Scholar 

  45. Atasoy, S., et al.: Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci. Rep. 7, 17661 (2017)

    Google Scholar 

  46. Deco, G., Tononi, G., Boly, M., Kringelbach, M.L.: Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015)

    Article  CAS  Google Scholar 

  47. Lee, U., et al.: Brain networks maintain a scale-free organization across consciousness, anesthesia, and recoveryevidence for adaptive reconfiguration. J. Am. Soc. Anesthesiol. 113, 1081–1091 (2010)

    Article  Google Scholar 

  48. Pearlmutter, B.A., Houghton, C.J.: A new hypothesis for sleep: tuning for criticality. Neural Comput. 21, 1622–1641 (2009)

    Article  Google Scholar 

  49. Meisel, C., Olbrich, E., Shriki, O., Achermann, P.: Fading signatures of critical brain dynamics during sustained wakefulness in humans. J. Neurosci. 33, 17363–17372 (2013)

    Article  CAS  Google Scholar 

  50. Tinker, J., Perez Velazquez, J.: Power law scaling in synchronization of brain signals depends on cognitive load. Front. Syst. Neurosci. 8 (2015)

    Google Scholar 

  51. Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E., Gross, T.: Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput. Biol. 8, e1002312 (2012)

    Article  CAS  Google Scholar 

  52. Stewart, C.V., Plenz, D.: Inverted-u profile of dopamine-nmda-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex. J. Neurosci. 26, 8148–8159 (2006)

    Article  CAS  Google Scholar 

  53. Gireesh, E.D., Plenz, D.: Neuronal avalanches organize as nested theta-and beta/gamma-oscillations during development of cortical layer 2/3. Proc. Natl. Acad. Sci. 105, 7576–7581 (2008)

    Article  CAS  Google Scholar 

  54. Pasquale, V., Massobrio, P., Bologna, L., Chiappalone, M., Martinoia, S.: Self-organization and neuronal avalanches in networks of dissociated cortical neurons. Neuroscience 153, 1354–1369 (2008)

    Article  CAS  Google Scholar 

  55. Bilder, R.M., Knudsen, K.S.: Creative cognition and systems biology on the edge of chaos. Front. Psychol. 5 (2014)

    Google Scholar 

  56. Beaty, R.E., Benedek, M., Kaufman, S.B., Silvia, P.J.: Default and executive network coupling supports creative idea production. Sci. Rep. 5 (2015)

    Google Scholar 

  57. Limb, C.J., Braun, A.R.: Neural substrates of spontaneous musical performance: an fMRI study of jazz improvisation. PLoS One 3, e1679 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selen Atasoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Atasoy, S., Deco, G., Kringelbach, M.L. (2019). Playing at the Edge of Criticality: Expanded Whole-Brain Repertoire of Connectome-Harmonics. In: Tomen, N., Herrmann, J., Ernst, U. (eds) The Functional Role of Critical Dynamics in Neural Systems . Springer Series on Bio- and Neurosystems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-20965-0_2

Download citation

Publish with us

Policies and ethics