Abstract
We discuss the connections between the observations of critical dynamics in neuronal networks and the maximum entropy models that are often used as statistical models of neural activity, focusing in particular on the relation between statistical and dynamical criticality. We present examples of systems that are critical in one way, but not in the other, exemplifying thus the difference of the two concepts. We then discuss the emergence of Zipf laws in neural activity, verifying their presence in retinal activity under a number of different conditions. In the second part of the chapter we review connections between statistical criticality and the structure of the parameter space, as described by Fisher information. We note that the model-based signature of criticality, namely the divergence of specific heat, emerges independently of the dataset studied; we suggest this is compatible with previous theoretical findings.
This is a preview of subscription content, access via your institution.
Buying options







References
Aitchison, L., Corradi, N., Latham, P.E.: Zipf’s law arises naturally when there are underlying, unobserved variables. PLOS Comput. Biol. 12(12), 1–32 (2016). https://doi.org/10.1371/journal.pcbi.1005110
Athreya, K.B., Jagers, P.: Classical and Modern Branching Processes. IMA, vol. 84. Springer (1997)
Auerbach, F.: Das Gesetz der Bevölkerungskonzentration. Petermanns Geographische Mitteilungen 59, 74–76 (1913) (Quote translated by J.M.H.)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Beggs, J.M.: The criticality hypothesis: how local cortical networks might optimize information processing. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 366(1864), 329–343 (2008)
Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23(35), 11167–11177 (2003)
Beggs, J.M., Timme, N.: Being critical of criticality in the brain. Front. Physiol. 3, 163 (2012)
Cristelli, M., Batty, M., Pietronero, L.: There is more than power law in Zipf. Sci. Rep. 2, 812(7) (2012)
Eurich, C.W., Herrmann, J.M., Ernst, U.A.: Finite-size effects of avalanche dynamics. Phys. Rev. E 66(6), 066,137 (2002)
Gabaix, X.: Zipf’s law and the growth of cities. Am. Econ. Rev. 89(2), 129–132 (1999)
Gardella, C., Marre, O., Mora, T.: Blindfold learning of an accurate neural metric. In: Proceedings of the National Academy of Sciences, p. 201718710 (2018)
Gautam, S.H., Hoang, T.T., McClanahan, K., Grady, S.K., Shew, W.L.: Maximizing sensory dynamic range by tuning the cortical state to criticality. PLoS Comput. Biol. 11(12), e1004,576 (2015)
Glauber, R.J.: Time-dependent statistics of the Ising model. J. Math. Phys. 4(2), 294–307 (1963)
Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna, J.P.: Universally sloppy parameter sensitivities in systems biology models. PLoS Comput. Biol. 3(10), e189 (2007)
Hahn, G., Ponce-Alvarez, A., Monier, C., Benvenuti, G., Kumar, A., Chavane, F., Deco, G., Frgnac, Y.: Spontaneous cortical activity is transiently poised close to criticality. PLOS Comput. Biol. 13(5), 1–29 (2017). https://doi.org/10.1371/journal.pcbi.1005543
Hennig, M.H., Adams, C., Willshaw, D., Sernagor, E.: Early-stage waves in the retinal network emerge close to a critical state transition between local and global functional connectivity. J. Neurosci. 29(4), 1077–1086 (2009)
Herzog, R., Escobar, M.J., Cofre, R., Palacios, A.G., Cessac, B.: Dimensionality reduction on spatio-temporal maximum entropy models on spiking networks. Preprint bioRxiv:278606 (2018)
Hilgen, G., Sorbaro, M., Pirmoradian, S., Muthmann, J.O., Kepiro, I.E., Ullo, S., Ramirez, C.J., Encinas, A.P., Maccione, A., Berdondini, L., et al.: Unsupervised spike sorting for large-scale, high-density multielectrode arrays. Cell Rep. 18(10), 2521–2532 (2017)
Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)
Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Z. für Phys. 31(1), 253–258 (1925)
Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)
Jiang, B., Jia, T.: Zipf’s law for all the natural cities in the United States: a geospatial perspective. Int. J. Geogr. Inf. Sci. 25(8), 1269–1281 (2011)
Kinouchi, O., Copelli, M.: Optimal dynamical range of excitable networks at criticality. Nat. Phys. 2, 348–352 (2006)
Köster, U., Sohl-Dickstein, J., Gray, C.M., Olshausen, B.A.: Modeling higher-order correlations within cortical microcolumns. PLoS Comput. Biol. 10(7), e1003,684 (2014)
Larremore, D.B., Shew, W.L., Restrepo, J.G.: Predicting criticality and dynamic range in complex networks: effects of topology. Phys. Rev. Lett. 106(5), 058,101 (2011)
Li, W.: Random texts exhibit Zipf’s-law-like word frequency distribution. IEEE Trans. Inf. Theory 38(6), 1842–1845 (1992)
Machta, B.B., Chachra, R., Transtrum, M.K., Sethna, J.P.: Parameter space compression underlies emergent theories and predictive models. Science 342(6158), 604–607 (2013)
Marre, O., El Boustani, S., Frégnac, Y., Destexhe, A.: Prediction of spatiotemporal patterns of neural activity from pairwise correlations. Phys. Rev. Lett. 102(13), 138,101 (2009)
Mastromatteo, I., Marsili, M.: On the criticality of inferred models. J. Stat. Mech. Theory Exp. 2011(10), P10,012 (2011)
Mizuseki, K., Buzsáki, G.: Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4(5), 1010–1021 (2013)
Mora, T., Deny, S., Marre, O.: Dynamical criticality in the collective activity of a population of retinal neurons. Phys. Rev. Lett. 114(7), 078,105 (2015)
Nasser, H., Marre, O., Cessac, B.: Spatio-temporal spike train analysis for large scale networks using the maximum entropy principle and Monte Carlo method. J. Stat. Mech. Theory Exp. 2013(03), P03,006 (2013)
Newman, M.E.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)
Nishimori, H.: Statistical Physics of Spin Glasses and Information Processing: An Introduction, vol. 111. Clarendon Press (2001)
Nonnenmacher, M., Behrens, C., Berens, P., Bethge, M., Macke, J.H.: Signatures of criticality arise from random subsampling in simple population models. PLoS Comput. Biol. 13(10), e1005,718 (2017)
O’Donnell, C., Gonçalves, J.T., Whiteley, N., Portera-Cailliau, C., Sejnowski, T.J.: The population tracking model: a simple, scalable statistical model for neural population data. Neural Comput. (2016)
Ohiorhenuan, I.E., Mechler, F., Purpura, K.P., Schmid, A.M., Hu, Q., Victor, J.D.: Sparse coding and high-order correlations in fine-scale cortical networks. Nature 466(7306), 617–621 (2010)
Panas, D., Amin, H., Maccione, A., Muthmann, O., van Rossum, M., Berdondini, L., Hennig, M.H.: Sloppiness in spontaneously active neuronal networks. J. Neurosci. 35(22), 8480–8492 (2015)
Priesemann, V., Valderrama, M., Wibral, M., Le Van Quyen, M.: Neuronal avalanches differ from wakefulness to deep sleep–evidence from intracranial depth recordings in humans. PLoS Comput. Biol. 9(3), e1002,985 (2013)
Redner, S.: How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B Condens. Matter Complex Syst. 4(2), 131–134 (1998)
Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087), 1007–1012 (2006)
Shew, W.L., Plenz, D.: The functional benefits of criticality in the cortex. The Neuroscientist 19(1), 88–100 (2013)
Shew, W.L., Yang, H., Petermann, T., Roy, R., Plenz, D.: Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29(49), 15595–15600 (2009)
Shlens, J., Field, G.D., Gauthier, J.L., Grivich, M.I., Petrusca, D., Sher, A., Litke, A.M., Chichilnisky, E.: The structure of multi-neuron firing patterns in primate retina. J. Neurosci. 26(32), 8254–8266 (2006)
Song, J., Marsili, M., Jo, J.: Emergence and relevance of criticality in deep learning (2017). arXiv preprint arXiv:1710.11324
Tang, A., Jackson, D., Hobbs, J., Chen, W., Smith, J.L., Patel, H., Prieto, A., Petrusca, D., Grivich, M.I., Sher, A., Hottowy, P., Dabrowski, W., Litke, A.M., Beggs, J.M.: A maximum entropy model applied to spatial and temporal correlations from cortical networks in vitro. J. Neurosci. 28, 505518 (2008)
Tkačik, G., Marre, O., Amodei, D., Schneidman, E., Bialek, W., Berry II, M.J.: Searching for collective behavior in a large network of sensory neurons. PLoS Comput. Biol. 10(1), e1003,408 (2014)
Tkačik, G., Mora, T., Marre, O., Amodei, D., Palmer, S.E., Berry, M.J., Bialek, W.: Thermodynamics and signatures of criticality in a network of neurons. Proc. Natl. Acad. Sci. 112(37), 11508–11513 (2015)
Vázquez-Rodríguez, B., Avena-Koenigsberger, A., Sporns, O., Griffa, A., Hagmann, P., Larralde, H.: Stochastic resonance at criticality in a network model of the human cortex. Sci. Rep. 7(1), 13,020 (2017)
Vitanov, N.K., Ausloos, M.: Test of two hypotheses explaining the size of populations in a system of cities. J. Appl. Stat. 42(12), 2686–2693 (2015)
Yu, S., Yang, H., Nakahara, H., Santos, G.S., Nikolić, D., Plenz, D.: Higher-order interactions characterized in cortical activity. J. Neurosci. 30(48), 17514–17526 (2011)
Zipf, G.K.: Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge (1949)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sorbaro, M., Herrmann, J.M., Hennig, M. (2019). Statistical Models of Neural Activity, Criticality, and Zipf’s Law. In: Tomen, N., Herrmann, J., Ernst, U. (eds) The Functional Role of Critical Dynamics in Neural Systems . Springer Series on Bio- and Neurosystems, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-20965-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-20965-0_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20964-3
Online ISBN: 978-3-030-20965-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)