Skip to main content

Boundary Integral Equations and Their Approximations

  • Chapter
  • First Online:
  • 383 Accesses

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 130))

Abstract

The local problems in the definition of basis functions for the BEM-based FEM are treated by means of boundary integral equations. This chapter gives a short introduction into this topic with a special emphasis on its application in the BEM-based FEM. Therefore, the boundary integral operators for the Laplace problem are reviewed in two- and three-dimensions and corresponding boundary integral equations are derived. Their discretization is realized by a Galerkin boundary element method, which is used in the numerical examples and tests throughout the book. However, we also give an alternative approach for the discretization of boundary integral equations that relies on the Nyström method. The application of these approaches as local solvers for the BEM-based FEM is discussed in details and some comparisons highlighting advantageous and disadvantageous of these two solvers are given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, A., Ovall, J.S., Weißer, S.: A Nyström-based finite element method on polygonal elements. Comput. Math. Appl. 75(11), 3971–3986 (2018)

    Article  MathSciNet  Google Scholar 

  2. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. SIAM, Philadelphia (1999)

    Book  Google Scholar 

  3. Atkinson, K.E.: The numerical solution of integral equations of the second kind. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 4. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  4. Bebendorf, M.: Hierarchical matrices. In: Lecture Notes in Computational Science and Engineering, vol. 63. Springer, Berlin (2008)

    Google Scholar 

  5. Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)

    Article  MathSciNet  Google Scholar 

  6. Davis, P.J.: On the numerical integration of periodic analytic functions. In: Langer, R.E. (ed) On Numerical Approximation. Proceedings of a Symposium, Madison, April 21–23, 1958, Publication no. 1 of the Mathematics Research Center, U.S. Army, the University of Wisconsin, pp. 45–59. The University of Wisconsin Press, Madison (1959)

    Google Scholar 

  7. Gwinner, J., Stephan, E.P.: Advanced Boundary Element Methods. Springer Series in Computational Mathematics, vol. 52. Springer International Publishing, New York (2018)

    Google Scholar 

  8. Hörmander, L.: The analysis of linear partial differential operators. I. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256. Springer, Berlin (1983). Distribution theory and Fourier analysis

    Google Scholar 

  9. Hsiao, G.C., Wendland, W.L.: A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58(3), 449–481 (1977)

    Article  MathSciNet  Google Scholar 

  10. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Applied Mathematical Sciences, vol. 164. Springer, Berlin (2008)

    Book  Google Scholar 

  11. Karachik, V.V., Antropova, N.A.: On the Solution of the Inhomogeneous Polyharmonic Equation and the inhomogeneous Helmholtz equation. Differ. Equ. 46(3), 387–399 (2010)

    Article  MathSciNet  Google Scholar 

  12. Kress, R.: A Nyström method for boundary integral equations in domains with corners. Numer. Math. 58(2), 145–161 (1990)

    Article  MathSciNet  Google Scholar 

  13. Kress, R.: Linear Integral Equations. Applied Mathematical Sciences, vol. 82, 2nd edn. Springer, New York (1999)

    Chapter  Google Scholar 

  14. Maz’ya, V.G.: Boundary integral equations. In: Analysis, IV. Encyclopaedia of Mathematical Sciences, vol. 27, pp. 127–222. Springer, Berlin (1991)

    Chapter  Google Scholar 

  15. McLean, W.C.H.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Mousavi, S.E., Sukumar, N.: Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons. Comput. Mech. 47, 535–554 (2011)

    Article  MathSciNet  Google Scholar 

  17. Nyström, E.J.: Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben. Acta Math. 54(1), 185–204 (1930)

    Article  MathSciNet  Google Scholar 

  18. Ovall, J.S., Reynolds, S.: A high-order method for evaluating derivatives of harmonic function in planar domains. SIAM J. Sci. Comput. 40(3), A1915–A1935 (2018)

    Article  MathSciNet  Google Scholar 

  19. Rjasanow, S., Steinbach, O.: The fast solution of boundary integral equations. In: Mathematical and Analytical Techniques with Applications to Engineering. Springer, New York (2007)

    Google Scholar 

  20. Rjasanow, S., Weißer, S.: ACA improvement by surface segmentation. In: Apel, T., Langer, U., Meyer, A., Steinbach, O. (eds.) Advanced Finite Element Methods with Applications-Proceedings of the 30th Chemnitz FEM Symposium 2017. Lecture Notes in Computational Science and Engineering, vol. 128, pp. X, 205. Springer International Publishing, New York (2019)

    Google Scholar 

  21. Sauter, S.A., Schwab, C.: Boundary Element Methods. Springer Series in Computational Mathematics, vol. 39. Springer, Berlin (2011)

    Book  Google Scholar 

  22. Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry Towards Geometric Engineering, pp. 203–222. Springer, Berlin (1996)

    Chapter  Google Scholar 

  23. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), 36 (2015). Article 11

    Article  MathSciNet  Google Scholar 

  24. Sloan, I.H.: Error analysis of boundary integral methods. Acta Numerica 1, 287–339 (1992)

    Article  MathSciNet  Google Scholar 

  25. Steinbach, O.: Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer, New York (2007)

    Google Scholar 

  26. Steinbach, O., Wendland, W.L.: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries. J. Math. Anal. Appl. 262(2), 733–748 (2001)

    Article  MathSciNet  Google Scholar 

  27. Stephan, E.P., Suri, M.: The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25(6), 783–807 (1991)

    Article  MathSciNet  Google Scholar 

  28. Sukumar, N., Tabarraei, A.: Conforming polygonal finite elements. Int. J. Numer. Methods Eng. 61(12), 2045–2066 (2004)

    Article  MathSciNet  Google Scholar 

  29. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45(3), 309–328 (2012)

    Article  MathSciNet  Google Scholar 

  30. von Petersdorff, T., Stephan, E.P.: Regularity of mixed boundary value problems in R 3 and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12(3), 229–249 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weißer, S. (2019). Boundary Integral Equations and Their Approximations. In: BEM-based Finite Element Approaches on Polytopal Meshes. Lecture Notes in Computational Science and Engineering, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-030-20961-2_4

Download citation

Publish with us

Policies and ethics