Advertisement

Marine Bioenergy Production

Chapter
  • 433 Downloads

Abstract

Biomass is the total of organisms (including plants, animals, and microbes) within a given space as converted into a numerical quantity. In South Korean ecology, corresponding terms include “existing organism quantity” and “organism quantity.” In a contemporary environment where people are obliged to use solar energy in addition to chemical fuel and nuclear energy, the word “biomass” has been used in applied science fields beyond its original ecological sense.

References

  1. Andersen, R. A., & Kawachi, M. (2005). Microalgae isolation techniques. Algal Culturing Techniques 83.Google Scholar
  2. Beer, L. L., Boyd, E. S., Peters, J. W., & Posewitz, M. C. (2009). Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20(3), 264–271.PubMedCrossRefGoogle Scholar
  3. Boichenko, V. A., Greenbaum, E., & Seibert, M. (2004). Hydrogen production by photosynthetic microorganisms. Molecular to Global Photosynthesis, 397–451.Google Scholar
  4. Borines, M., De Leon, R., & McHenry, M. (2011). Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines. Renewable and Sustainable Energy Reviews, 15(9), 4432–4435.CrossRefGoogle Scholar
  5. Brennan, L., & Owende, P. (2010). Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.CrossRefGoogle Scholar
  6. Bulgariu, L., & Bulgariu D. (2015). Biodiesel production from marine macroalgae, In S. K. Kim, & C. G. Lee (Eds.), Marine bioenergy: Trends and developments (pp. 423–458). CRC Press.Google Scholar
  7. Bush, R. A., & Hall, K. M. (2006). Process for the production of ethanol from algae. Google Patents.Google Scholar
  8. Campbell, P. K., Beer, T., & Batten, D. (2011). Life cycle assessment of biodiesel production from microalgae in ponds. Bioresource Technology, 102(1), 50–56.PubMedCrossRefGoogle Scholar
  9. Cecchi, F., Pavan, P., & Mata-Alvarez, J. (1996). Anaerobic co-digestion of sewage sludge: application to the macroalgae from the Venice lagoon. Resources, Conservation and recycling, 17, 57–66.Google Scholar
  10. Chen, P. H., & Oswald, W. J. (1998). Thermochemical treatment for algal fermentation. Environment International, 24(8), 889–897.CrossRefGoogle Scholar
  11. Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., & Chang, J.-S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource technology, 102(1), 71–81Google Scholar
  12. Duman, G., Uddin, M. A., & Yanik, J. (2014). Hydrogen production from algal biomass via steam gasification. Bioresource Technology, 166, 24–30.PubMedCrossRefGoogle Scholar
  13. Gao, K., & McKinley, K. R. (1994). Use of macroalgae for marine biomass production and CO2 remediation: A review. Journal of Applied Phycology, 6(1), 45–60.CrossRefGoogle Scholar
  14. Grala, A., Zieliński, M., Dębowski, M., & Dudek, M. (2012). Effects of hydrothermal depolymerization and enzymatic hydrolysis of algae biomass on yield of methane fermentation process. Polish Journal of Environmental Studies, 21(2).Google Scholar
  15. Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. International Journal of Hydrogen Energy, 27(11–12), 1185–1193.CrossRefGoogle Scholar
  16. Hansson, G. (1983). Methane production from marine, green macro-algae. Resources and conservation, 8(3), 185–194.CrossRefGoogle Scholar
  17. Hossain, A. S., Salleh, A., Boyce, A. N., Chowdhury, P., & Naqiuddin, M. (2008). Biodiesel fuel production from algae as renewable energy. American Journal of Biochemistry and Biotechnology, 4(3), 250–254.CrossRefGoogle Scholar
  18. Huang, H., Yuan, X., Zeng, G., Wang, J., Li, H., Zhou, C., et al. (2011). Thermochemical liquefaction characteristics of microalgae in sub-and supercritical ethanol. Fuel Processing Technology, 92(1), 147–153.CrossRefGoogle Scholar
  19. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621–639.PubMedCrossRefGoogle Scholar
  20. Jones, C. S., & Mayfield, S. P. (2012). Algae biofuels: Versatility for the future of bioenergy. Current Opinion in Biotechnology, 23(3), 346–351.PubMedCrossRefGoogle Scholar
  21. Khan, S. A., Hussain, M. Z., Prasad, S., & Banerjee, U. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13(9), 2361–2372.CrossRefGoogle Scholar
  22. Kim, S.-K., & Manivasagan, P. (2015). Introduction to marine bioenergy (pp. 20–29). Marine Bioenergy: CRC Press.CrossRefGoogle Scholar
  23. Kumazawa, S. (1991). Screening, incubation of marine microalgae, In S. Miyachi, N. Saga, & T. Matsunaga (Eds.), Labo-manual marine biotechnology (pp. 18–28). Tokyo, Japan: Shokabo Publishing Co.Google Scholar
  24. Lamed, R., & Bayer, E. A. (1988). The cellulosome of clostridium thermocellum: Advances in Applied Microbiology. 33, 88–93.Google Scholar
  25. Lardon, L., Helias, A., Sialve, B., Steyer, J.-P., & Bernard, O. (2009). Life-cycle assessment of biodiesel production from microalgae.Google Scholar
  26. Lee, S.-M., & Lee, J.-H. (2012). Ethanol fermentation for main sugar components of brown-algae using various yeasts. Journal of Industrial and Engineering Chemistry, 18(1), 16–18.CrossRefGoogle Scholar
  27. Lee, I.-K., Shim, S.-C., Cho, H.-O., & Rhee, C.-O. (1971). On the components of edible marine algae in Korea-I. The components of several edible brown algae. Applied Biological Chemistry, 14(3), 213–220.Google Scholar
  28. Lee, I., Hwang, M., & Oh, Y. (1992). Notes on marine algae from Korea (IV). Korean Journal of Phycology, 7(7), 257–268.Google Scholar
  29. Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: Prospects and limitations to practical application. International Journal of Hydrogen Energy, 29(2), 173–185.CrossRefGoogle Scholar
  30. Lien, T., & Knutsen, G. (1975). Inexpensive continuously operating centrifuge for rapid collection of microalgae. Laboratory Practice.Google Scholar
  31. Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232.CrossRefGoogle Scholar
  32. Matsumoto, M., Yokouchi, H., Suzuki, N., Ohata, H., & Matsunaga, T. (2003). Saccharification of marine microalgae using marine bacteria for ethanol production. Applied Biochemistry and Biotechnology, 105(1–3), 247–254.PubMedCrossRefGoogle Scholar
  33. Matsunaga, T., Matsumoto, M., Maeda, Y., Sugiyama, H., Sato, R., & Tanaka, T. (2009). Characterization of marine microalgae, Scenedesmus sp. strain JPCC GA0024 toward biofuel production. Biotechnology letters, 31(9), 1367–1372.Google Scholar
  34. Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6), 841–846.PubMedCrossRefGoogle Scholar
  35. Nagai, S. & Nishio, N. (1989). Handbook of heat and mass transfer: In Catalysis, Kinetics, and Reactor Engineering, Vol. 3. Gulf Publishing.Google Scholar
  36. Nakashimada, Y., & Nishio, N. (2011). Methane production techniques from alage. In M. Notoya (Ed.), Seaweed bio fuel (pp. 160–173). Japan: CMC.Google Scholar
  37. Ni, M., Leung, D. Y., Leung, M. K., & Sumathy, K. (2006). An overview of hydrogen production from biomass. Fuel Processing Technology, 87(5), 461–472.CrossRefGoogle Scholar
  38. Nkemka, V.-N., Murto, M. (2010). Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. Journal of Environmental Management, 91(7), 1573–1579.PubMedCrossRefGoogle Scholar
  39. Omil, F., Méndez, R., Lema, J. M. (1995). Anaerobic treatment of saline wastewaters under high sulphide and ammonia content. Bioresource technology, 54(3), 269–278.CrossRefGoogle Scholar
  40. Otsuka, K. & Yoshino, A. (2004). A fundamental study on anaerobic digestion of sea lettuce. In Ocean’04-MTS/IEEE techno-ocean’04: bridges across the oceans-conference proceedings, (pp. 1770–1773).Google Scholar
  41. Park, S., & Li, Y. (2012). Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresource Technology, 111, 42–48.PubMedCrossRefGoogle Scholar
  42. Percival, E. (1979). The polysaccharides of green, red and brown seaweeds: their basic structure, biosynthesis and function. British Phycological Journal, 14(2), 103–117.CrossRefGoogle Scholar
  43. Pimentel, D., & Patzek, T. W. (2005). Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Natural Resources Research, 14(1), 65–76.CrossRefGoogle Scholar
  44. Prabandono, K., & Amin, S. (2015). Production of biomethane from marine microalgae, In S. K. Kim & C. G. Lee (Eds.), Marine bioenergy: trends and development, (pp. 303–323). CRC Press.Google Scholar
  45. Pulz, O. (2001). Photobioreactors: Production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57(3), 287–293.PubMedCrossRefGoogle Scholar
  46. Rossignol, N., Vandanjon, L., Jaouen, P., & Quemeneur, F. (1999). Membrane technology for the continuous separation microalgae/culture medium: Compared performances of cross-flow microfiltration and ultrafiltration. Aquacultural Engineering, 20(3), 191–208.CrossRefGoogle Scholar
  47. Sato, M. (2011). Ethanol production technique with high efficiency from seaweed by continuous fermentation. In M. Notoya, (Ed.), Seaweed Bio Fuel (pp. 129–137). Japan: CMC.Google Scholar
  48. Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101(6), 1570–1580.PubMedCrossRefGoogle Scholar
  49. Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548–3555.CrossRefGoogle Scholar
  50. Singh, P., Gupta, S. K., Guldhe, A., Rawat, I., & Bux, F. (2015). Microalgae isolation and basic culturing techniques. In S. K. Kim, (Ed.), Handbook of marine microalgae (pp. 43–54). London, UK: Academic Press.Google Scholar
  51. Takayama, H., & Matsumoto, M. (2010). Industrial applications of marine microalgae and their potential for bioenergy. Bio industry, 27(8), 6–12.Google Scholar
  52. Takeda, H., Yoneyama, F., Kawai, S., Hashimoto, W., & Murata, K. (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy & Environmental Science. 4(7), 2575Google Scholar
  53. Tanisho, S. (2011), Production technique of biohydrogen, In.: Masahiro Notoya (Ed.), Seaweed Bio Fuel (pp. 177–189). Japan: CMC.Google Scholar
  54. Tanisho, S., & Ishiwata, Y. (1994). Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. International Journal of Hydrogen Energy, 19(10), 807–812.CrossRefGoogle Scholar
  55. Ventura, M. R., & Castañón, J. I. R. (1998). The nutritive value of seaweed (Ulva lactuca) for goats. Small Ruminant Research 29(3), 325–327.Google Scholar
  56. Visschers, V. H., & Siegrist, M. (2013). How a nuclear power plant accident influences acceptance of nuclear power: Results of a longitudinal study before and after the Fukushima disaster. Risk Analysis: An International Journal, 33(2), 333–347.CrossRefGoogle Scholar
  57. Vonshak, A. (2017). Laboratory techniques for the cultivation of microalgae. In Handbook of microalgal mass culture (1986) (117–146). CRC Press.Google Scholar
  58. Wakayama, T. (2011). Hydrogen production using photosynthetic microorganisms, In M. Notoya (Ed.), Seaweed Bio Fuel, pp. 190–203. Japan: CMCGoogle Scholar
  59. Wang, J., & Wan, W. (2008). Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. International Journal of Hydrogen Energy, 33(12), 2934–2941.CrossRefGoogle Scholar
  60. Wang, X., Liu, X., & Wang, G. (2011). Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation F. Journal of Integrative Plant Biology, 53(3), 246–252.PubMedCrossRefGoogle Scholar
  61. Wei, N., Quarterman, J., & Jin, Y.-S. (2013). Marine macroalgae: An untapped resource for producing fuels and chemicals. Trends in Biotechnology, 31(2), 70–77.PubMedCrossRefGoogle Scholar
  62. Wrighton, K. C., Thomas, B. C., Sharon, I., Miller, C. S., Castelle, C. J., VerBerkmoes, N. C., et al. (2012). Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science, 337(6102), 1661–1665.PubMedCrossRefGoogle Scholar
  63. Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Life-cycle analysis on biodiesel production from microalgae: Water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165.PubMedCrossRefGoogle Scholar
  64. Yokoyama, S., Jonouchi, K., & Imou, K. (2007). Energy production from marine biomass: fuel cell power generation driven by methane produced from seaweed. World Academy of Science, Engineering and Technology. 28, 320–323.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Marine Life Science, College of Ocean Science and TechnologyKorea Maritime and Ocean UniversityBusanSouth Korea

Personalised recommendations