Seaweed Biotechnology



Marine environment becoming the most explored habitat because of its chemical and biological diversity. Recently, marine floral and faunal exploration and exploitation becoming a great deal of interest which is the key to combat various diseases. Among the marine sources, algae and seaweeds are the more valuable sources of structurally diverse bioactive compounds. Even though, seaweed salads have been supplied as a regular diet, much information is not available whether the algal food has any significance on human health. For example, the beneficial effects of seaweeds and their bioactive substances like phlorotannins, sulphated polysaccharides, peptides, and carotenoid pigments extend their applications from eco-biotechnological to the industrial standpoint. Hence, the utilization of marine macroalgal substances a potential biological and industrial product should be well established worldwide to gain various health and medical benefits. Although Asians consume seaweeds because of the known importance in their daily lives, many of the westerns might not think of the ‘seaweed’ as nutritional or a daily supplement in their food. It is because of the term ‘weed’, which generally represents the unwanted plants in any ecosystem. Hence. I would like to introduce a more appropriate term “sea-vegetables” in this book, which could bring a positive notion in human beings to think ‘algae’ or ‘seaweed’ as consumable vegetables from sea. The term seaweed typically refers to cryptograms that grow in seawater and do not bloom. They include green, brown, and red algae, which are visible to the unaided eye and survive by attaching to other objects.


  1. Aguirre-Lipperheide, M., Estrada-Rodríyuez, F. J., & Evans, L. V. (1995). Facts, problems, and needs in seaweed tissue culture: An appraisal. Journal of Phycology, 31(5), 677–688.CrossRefGoogle Scholar
  2. Amano, H. (1990). Algae Biotechnology. In K. Yamaguchi (Ed.), Marine Biochmistry (pp. 200–209). Tokyo, Japan: Tokyo University Pub.Google Scholar
  3. Aruga, U. (1990). Seaweed biotechnology. In F. Takashima (Ed.), Marine Biotechnology and High Technology (pp. 98–118). Tokyo, Japan: Seizando-Shoten Publishing, Co.Google Scholar
  4. Augst, A. D., Kong, H. J., & Mooney, D. J. (2006). Alginate hydrogels as biomaterials. Macromolecular Bioscience, 6(8), 623–633.PubMedCrossRefGoogle Scholar
  5. Bierhalz, A. C. K., da Silva, M. A., & Kieckbusch, T. G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering, 110(1), 18–25.CrossRefGoogle Scholar
  6. Borowitzka, M. A., Critchley, A. T., Kraan, S., Peters, A., Sjøtun, K., & Notoya, M. (2009). In Proceedings of the 19th International Seaweed Symposium, held in Kobe, Japan, March 26–31, 2007, Springer Science & Business Media.Google Scholar
  7. Brownlee, I., Allen, A., Pearson, J., Dettmar, P., Havler, M., Atherton, M., et al. (2005). Alginate as a source of dietary fiber. Critical Reviews in Food Science and Nutrition, 45(6), 497–510.PubMedCrossRefGoogle Scholar
  8. Chaki, T. (2005). Function of alginic acid oligosaccharides and food application. In K. Inuuye (Ed.), Functional glyco-materials: Their development and application to food ( pp. 151–159). Tokyo, Japan: CMC Publishing, Co.Google Scholar
  9. Cheney, D. P., Mar, E., Saga, N., & van der Meer, J. (1986). Protoplast isolation and cell division in the agar-producing seaweed Gracilaria (rhodophyta) 1. Journal of Phycology, 22(2), 238–243.Google Scholar
  10. Chen, L. C.-M., & Taylor, A. R. A. (1978). Medullary tissue culture of the red alga. Canadian Journal of Botany, 56(7), 883–886.Google Scholar
  11. Chevolot, L., Mulloy, B., Ratiskol, J., Foucault, A., & Colliec-Jouault, S. (2001). A disaccharide repeat unit is the major structure in fucoidans from two species of brown algae. Carbohydrate Research, 330(4), 529–535.PubMedCrossRefGoogle Scholar
  12. Costa, L., Fidelis, G., Cordeiro, S. L., Oliveira, R., Sabry, D. D. A., Câmara, R., et al. (2010). Biological activities of sulfated polysaccharides from tropical seaweeds. Biomedicine & Pharmacotherapy, 64(1), 21–28.CrossRefGoogle Scholar
  13. Cumashi, A., Ushakova, N. A., Preobrazhenskaya, M. E., D’incecco, A., Piccoli, A., Totani, L., et al. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), 541–552.PubMedCrossRefGoogle Scholar
  14. Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311–4330.PubMedCrossRefGoogle Scholar
  15. de Souza, M. C. R., Marques, C. T., Dore, C. M. G., da Silva, F. R. F., Rocha, H. A. O., & Leite, E. L. (2007). Antioxidant activities of sulfated polysaccharides from brown and red seaweeds. Journal of Applied Phycology, 19(2), 153–160.CrossRefGoogle Scholar
  16. Draget, K. I., Smidsrød, O., & Skjåk‐Bræk, G. (2005). Alginates from algae. Biopolymers Online: Biology• Chemistry• Biotechnology• Applications 6.Google Scholar
  17. Duarte, M. E., Cardoso, M. A., Noseda, M. D., & Cerezo, A. S. (2001). Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohydrate Research, 333(4), 281–293.PubMedCrossRefGoogle Scholar
  18. Ermakova, S., Sokolova, R., Kim, S.-M., Um, B.-H., Isakov, V., & Zvyagintseva, T. (2011). Fucoidans from brown seaweeds Sargassum hornery, Eclonia cava, Costaria costata: Structural characteristics and anticancer activity. Applied Biochemistry and Biotechnology, 164(6), 841–850.PubMedCrossRefGoogle Scholar
  19. Garcia-Reina, G., Gomez-Pinchetti, J., Robledo, D., & Sosa, P. (1991). Actual, potential and speculative applications of seaweed cellular biotechnology: Some specific comments on Gelidium. Hydrobiologia, 221(1), 181–194.CrossRefGoogle Scholar
  20. George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan—A review. Journal of Controlled Release, 114(1), 1–14.PubMedCrossRefGoogle Scholar
  21. Gosch, B. J., Magnusson, M., Paul, N. A., & de Nys, R. (2012). Total lipid and fatty acid composition of seaweeds for the selection of species for oil-based biofuel and bioproducts. Gcb Bioenergy, 4(6), 919–930.CrossRefGoogle Scholar
  22. Hiura, N., Chaki, T., & Ogawa, H. (2001). Antihypertensive effects of sodium alginate oligosaccharides. Journal of the Agricultural Chemical Society of Japan (Japan).Google Scholar
  23. Hulata, G. (2001). Genetic manipulations in aquaculture: A review of stock improvement by classical and modern technologies. Genetica, 111(1–3), 155–173.PubMedCrossRefGoogle Scholar
  24. Ito, K., & Hori, K. (1989). Seaweed: Chemical composition and potential food uses. Food reviews international, 5(1), 101–144.CrossRefGoogle Scholar
  25. Iwamoto, M., Kurachi, M., Nakashima, T., Kim, D., Yamaguchi, K., Oda, T., et al. (2005). Structure–activity relationship of alginate oligosaccharides in the induction of cytokine production from RAW264. 7 cells. FEBS Letters, 579(20), 4423–4429.PubMedCrossRefGoogle Scholar
  26. Jiménez-Escrig, A., & Sánchez-Muniz, F. (2000). Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutrition Research, 20(4), 585–598.CrossRefGoogle Scholar
  27. Kawada, A., Hiura, N., Tajima, S., & Takahara, H. (1999). Alginate oligosaccharides stimulate VEGF-mediated growth and migration of human endothelial cells. Archives of Dermatological Research, 291(10), 542–547.PubMedCrossRefGoogle Scholar
  28. Kim, S., Moon, S., & Popkin, B. M. (2000). The nutrition transition in South Korea. The American journal of clinical nutrition, 71(1), 44–53.PubMedCrossRefGoogle Scholar
  29. Klemmer, K., Waldner, L., Stone, A., Low, N., & Nickerson, M. (2012). Complex coacervation of pea protein isolate and alginate polysaccharides. Food Chemistry, 130(3), 710–715.CrossRefGoogle Scholar
  30. Kraan, S. (2013). Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitigation and Adaptation Strategies for Global Change, 18(1), 27–46.CrossRefGoogle Scholar
  31. Kumar, G. R., Reddy, C., Ganesan, M., Thiruppathi, S., Dipakkore, S., Eswaran, K., et al. (2004). Tissue culture and regeneration of thallus from callus of Gelidiella acerosa (Gelidiaies, Rhodophyta). Phycologia, 43(5), 596–602.CrossRefGoogle Scholar
  32. Kusaykin, M., Bakunina, I., Sova, V., Ermakova, S., Kuznetsova, T., Besednova, N., et al. (2008). Structure, biological activity, and enzymatic transformation of fucoidans from the brown seaweeds. Biotechnology Journal: Healthcare Nutrition Technology, 3(7), 904–915.CrossRefGoogle Scholar
  33. Lahaye, M., & Robic, A. (2007). Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromolecules, 8(6), 1765–1774.PubMedCrossRefGoogle Scholar
  34. Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106–126.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Le Gall, Y., Braud, J., & Kloareg, B. (1990). Protoplast production in Chondrus crispus gametophytes (Gigartinales, Rhodophyta). Plant Cell Reports, 8(10), 582–585.PubMedCrossRefGoogle Scholar
  36. Lüning, K., & Pang, S. (2003). Mass cultivation of seaweeds: Current aspects and approaches. Journal of Applied Phycology, 15(2–3), 115–119.CrossRefGoogle Scholar
  37. Manivannan, K., Thirumaran, G., Devi, G. K., Hemalatha, A., & Anantharaman, P. (2008). Biochemical composition of seaweeds from Mandapam coastal regions along Southeast Coast of India. American-Eurasian Journal of Botany, 1(2), 32–37.Google Scholar
  38. Marinho-Soriano, E., Fonseca, P., Carneiro, M., & Moreira, W. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402–2406.PubMedCrossRefGoogle Scholar
  39. Mazarrasa, I., Olsen, Y. S., Mayol, E., Marbà, N., & Duarte, C. M. (2013). Rapid growth of seaweed biotechnology provides opportunities for developing nations. Nature Biotechnology, 31(7), 591.PubMedCrossRefGoogle Scholar
  40. McCandless, E., & Craigie, J. (1979). Sulfated polysaccharides in red and brown algae. Annual review of plant physiology, 30(1), 41–53.CrossRefGoogle Scholar
  41. Millner, P. A., Maureen, E., Callow, L., & Evans, V. (1979). Preparation of protoplasts from the green alga Enteromorpha intestinalis (L.) Link. Planta, 147(2), 174–177.Google Scholar
  42. Miyachi, S., Sagar, N., & Matsunaga, T. Labo-manual Marine Biotechnology (pp. 29–42). Tokyo, Japan: Shokabo Pub. Co.Google Scholar
  43. Moriya, C., Shida, Y., Yamane, Y., Miyamoto, Y., Kimura, M., Huse, N., et al. (2013). Subcutaneous administration of sodium alginate oligosaccharides prevents salt-induced hypertension in Dahl salt-sensitive rats. Clinical and Experimental Hypertension, 35(8), 607–613.PubMedCrossRefGoogle Scholar
  44. Nickerson, M., & Paulson, A. (2004). Rheological properties of gellan, κ-carrageenan and alginate polysaccharides: Effect of potassium and calcium ions on macrostructure assemblages. Carbohydrate Polymers, 58(1), 15–24.CrossRefGoogle Scholar
  45. Notoya, M. (2000). Algae farming and Biotechnology. In F. Takashita (Ed.), The next generation of marine biotechnology (pp. 101–113) Tokyo, Japan: Seizando-Shoton Publishing, Co.Google Scholar
  46. Ocio, M., Fernandez, P., Rodrigo, F., & Martinez, A. (1996). Heat resistance of Bacillus stearothermophilus spores in alginate-mushroom puree mixture. International Journal of Food Microbiology, 29(2–3), 391–395.PubMedCrossRefGoogle Scholar
  47. Ocio, M., Fiszman, S., Gasque, F., Rodrigo, M., & Martinez, A. (1997). Development of a restructured alginate food particle suitable for high temperature-short time process validation. Food Hydrocolloids, 11(4), 423–427.CrossRefGoogle Scholar
  48. Percival, E. (1979). The polysaccharides of green, red and brown seaweeds: Their basic structure, biosynthesis and function. British Phycological Journal, 14(2), 103–117.CrossRefGoogle Scholar
  49. Pereira, R., & Yarish, C. (2008). Mass production of marine macroalgae.Google Scholar
  50. Polne- Fuller, M. (1988). In T. J. Stadler, M. Mollion, C. Verdus, Y. Karamanos, H. Morvan, & D. Christiaen (Eds.), Algal Biotechnology (pp. 17–31). London and New York: Elsevier Applied Science.Google Scholar
  51. Polne-Fuller, M., Giborm, A. (1987). Calluses and callus-like growth in seaweeds: Induction and culture. In M. A. Ragan & C. J. Bird (Eds.), Twelfth International Seaweed Symposium. Developments in Hydrobiology, vol 41. Dordrecht: Springer.Google Scholar
  52. Ponce, N. M., Pujol, C. A., Damonte, E. B., Flores, M. L., & Stortz, C. A. (2003). Fucoidans from the brown seaweed Adenocystis utricularis: Extraction methods, antiviral activity and structural studies. Carbohydrate Research, 338(2), 153–165.PubMedCrossRefGoogle Scholar
  53. Pranoto, Y., Salokhe, V. M., & Rakshit, S. K. (2005). Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38(3), 267–272.CrossRefGoogle Scholar
  54. Reddy, C., Gupta, M. K., Mantri, V. A., & Jha, B. (2008). Seaweed protoplasts: Status, biotechnological perspectives and needs. Journal of Applied Phycology, 20(5), 619–632.CrossRefGoogle Scholar
  55. Renn, D. (1997). Biotechnology and the red seaweed polysaccharide industry: Status, needs and prospects. Trends in Biotechnology, 15(1), 9–14.CrossRefGoogle Scholar
  56. Rowley, J. A., Madlambayan, G., & Mooney, D. J. (1999). Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials, 20(1), 45–53.PubMedCrossRefGoogle Scholar
  57. Saga, N. (1982). A new method for pure culture of macroscopic algae, the one step selection method. Japanese Journal of Phycology, 30(1), 40–45.Google Scholar
  58. Saga, N., & Sakai, Y. (1983). Axenic tissue culture and callus formation of the marine brown alga Laminaria angustata. Nippon Suisan Gakkaishi, 49(10), 1561–1563.Google Scholar
  59. Sakai, T., & Kato, I. (2005). Functionality of fucoidan derived from kelp and their application to heath foods. In K. Inouye (Ed.), Functional glyco-materials: Their development and application to food ( pp. 401–410). Tokyo, Japan: CMC Publishing, Co.Google Scholar
  60. Sega, N., Uchida, T., & Sakai, Y. (1978). Bulletin Japanese Society Science Fisheries, 44, 87–?.Google Scholar
  61. Smidsrod, O., & Skjakbrk, G. (1990). Alginate as immobilization matrix for cells. Trends in Biotechnology, 8, 71–78.Google Scholar
  62. Stevenson, T. T., & Furneaux, R. H. (1991). Chemical methods for the analysis of sulphated galactans from red algae. Carbohydrate Research, 210, 277–298.PubMedCrossRefGoogle Scholar
  63. Terakado, S., Ueno, M., Tamura, Y., Toda, N., Yoshinaga, M., Otsuka, K., et al. (2012). Sodium alginate oligosaccharides attenuate hypertension and associated kidney damage in Dahl salt-sensitive rats fed a high-salt diet. Clinical and Experimental Hypertension, 34(2), 99–106.PubMedCrossRefGoogle Scholar
  64. Tseng, C. (2001). Algal biotechnology industries and research activities in China. Journal of Applied Phycology, 13(4), 375–380.CrossRefGoogle Scholar
  65. Ueno, M., Tamura, Y., Toda, N., Yoshinaga, M., Terakado, S., Otsuka, K., et al. (2012). Sodium alginate oligosaccharides attenuate hypertension in spontaneously hypertensive rats fed a low-salt diet. Clinical and Experimental Hypertension, 34(5), 305–310.PubMedCrossRefGoogle Scholar
  66. Ugwu, C., Aoyagi, H., & Uchiyama, H. (2008). Photobioreactors for mass cultivation of algae. Bioresource Technology, 99(10), 4021–4028.PubMedCrossRefGoogle Scholar
  67. Uno, T., Hattori, M., & Yoshida, T. (2006). Oral administration of alginic acid oligosaccharide suppresses IgE production and inhibits the induction of oral tolerance. Bioscience, Biotechnology, and Biochemistry, 70(12), 3054–3057.PubMedCrossRefGoogle Scholar
  68. Usov, A. I. (2011). Polysaccharides of the red algae. Advances in carbohydrate chemistry and biochemistry, 65, 115–217.PubMedCrossRefGoogle Scholar
  69. Vo, T.-S., & Kim, S.-K. (2013). Fucoidans as a natural bioactive ingredient for functional foods. Journal of Functional Foods, 5(1), 16–27.CrossRefGoogle Scholar
  70. Waaland, S. D. (1975). Evidence for a species-specific cell fusion hormone in red algae. Protoplasma, 86(1–3), 253–261.PubMedCrossRefGoogle Scholar
  71. Wang, L., Wang, X., Wu, H., & Liu, R. (2014). Overview on biological activities and molecular characteristics of sulfated polysaccharides from marine green algae in recent years. Marine drugs, 12(9), 4984–5020.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Wheeler, W., Neushul, M., & Woessner, J. (1979). Marine agriculture: Progress and problems. Experientia, 35(4), 433–435.CrossRefGoogle Scholar
  73. Yamada, N. (2001). Carbohydrates and polysaccharides of seaweeds, Science of Seaweed Utilization, (pp. 85–104). Tokyo, Japan: Seizando-Shoten Publishing, Co.Google Scholar
  74. Yang, C., Chung, D., Shin, I.-S., Lee, H., Kim, J., Lee, Y., et al. (2008). Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. International Journal of Biological Macromolecules, 43(5), 433–437.PubMedCrossRefGoogle Scholar
  75. Yoshida, T., Hirano, A., Wada, H., Takahashi, K., & Hattori, M. (2004). Alginic acid oligosaccharide suppresses Th2 development and IgE production by inducing IL-12 production. International Archives of Allergy and Immunology, 133(3), 239–247.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Marine Life Science, College of Ocean Science and TechnologyKorea Maritime and Ocean UniversityBusanSouth Korea

Personalised recommendations