Advertisement

Fish Genetics

Chapter
  • 398 Downloads

Abstract

Cells have a characteristic structure that is appropriate for performing their individual functions. Sperm cells, for example, have powerful flagella that allow them to swim through a female’s reproductive tract and find the egg. Nerve cells are elongated in shape in order to communicate signals between distant parts of the body. In this way, the different cells in the human body generally support the living individual in its activities (Chalfie et al. 1994).

References

  1. Agris, P. F. (2004). Decoding the genome: A modified view. Nucleic Acids Research, 32(1), 223–238.CrossRefGoogle Scholar
  2. Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11(10), 697.CrossRefGoogle Scholar
  3. Aoki, T. (2000). Gene of fish. In F. Takashita (Ed.), The next generation of fisheries biotechnology (pp. 1–15). Tokyo, Japan: Seizando-shoten Pubilishing Co.Google Scholar
  4. Aoki, T., & Miyata, M. (1997). Globin gene. In T. Aoki, et al. (Eds.), DNA of fish: Genetic approach of fish gene molecule (pp. 158–200).Google Scholar
  5. Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72(1), 291–336.CrossRefGoogle Scholar
  6. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802–805.CrossRefGoogle Scholar
  7. Chen, L., DeVries, A. L., & Cheng, C.-H. C. (1997). Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences, 94(8), 3811–3816.CrossRefGoogle Scholar
  8. Chen, T., & Powers, D. (1990). Transgenic fish. Trends in Biotechnology, 8, 209–215.Google Scholar
  9. Cossins, A. R., & Crawford, D. L. (2005). Fish as models for environmental genomics. Nature Reviews Genetics, 6(4), 324.CrossRefGoogle Scholar
  10. Crollius, H. R., & Weissenbach, J. (2005). Fish genomics and biology. Genome Research, 15(12), 1675–1682.CrossRefGoogle Scholar
  11. Du, S. J., Gong, Z., Fletcher, G. L., Shears, M. A., King, M. J., Idler, D. R., et al. (1992). Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Nature Biotechnology, 10(2), 176.CrossRefGoogle Scholar
  12. Gunderson, K. L., Kruglyak, S., Graige, M. S., Garcia, F., Kermani, B. G., Zhao, C., et al. (2004). Decoding randomly ordered DNA arrays. Genome Research, 14(5), 870–877.CrossRefGoogle Scholar
  13. Heikkila, J., Schultz, G., Iatrou, K., & Gedamu, L. (1982). Expression of a set of fish genes following heat or metal ion exposure. Journal of Biological Chemistry, 257(20), 12000–12005.PubMedGoogle Scholar
  14. Hudson, A. P., Cuny, G., Cortadas, J., Haschemeyer, A. E., & Bernardi, G. (1980). An analysis of fish genomes by density gradient centrifugation. European Journal of Biochemistry, 112(2), 203–210.CrossRefGoogle Scholar
  15. König, J., Zarnack, K., Luscombe, N. M., & Ule, J. (2012). Protein–RNA interactions: New genomic technologies and perspectives. Nature Reviews Genetics, 13(2), 77.CrossRefGoogle Scholar
  16. Lee, J. Y., Tada, T., Hirono, I., & Aoki, T. (1998). Molecular cloning and evolution of transferrin cDNAs in salmonids. Molecular Marine Biology and Biotechnology, 7(4), 287–293.Google Scholar
  17. Liu, H., Takano, T., Abernathy, J., Wang, S., Sha, Z., Jiang, Y., et al. (2010). Structure and expression of transferrin gene of channel catfish, Ictalurus punctatus. Fish & Shellfish Immunology, 28(1), 159–166.CrossRefGoogle Scholar
  18. Mikawa, N., Hirono, I., & Aoki, T. (1996). Structure of medaka transferrin gene and its 5’-flanking region. Molecular Marine Biology and Biotechnology, 5(3), 225–9.Google Scholar
  19. Miyata, M., & Aoki, T. (1997). Head-to-head linkage of carp α- and β-globin genes. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1354(2), 127–133.Google Scholar
  20. Murat, F., Peer, Y. V. D., & Salse, J. (2012). Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. Genome Biology and Evolution, 4(9), 917–928.CrossRefGoogle Scholar
  21. Nam, B. H., Yamamoto, E., Hirono, I., & Aoki, T. (2000) A survey of expressed genes in the leukocytes of Japanese flounder, Paralichthys olivaceus, infected with Hirame rhabdovirus. Developmental & Comparative Immunology, 24(1), 13–24.Google Scholar
  22. Palti, Y. (2011). Toll-like receptors in bony fish: From genomics to function. Developmental and Comparative Immunology, 35(12), 1263–1272.CrossRefGoogle Scholar
  23. Perry, K. L., Watkins, K. P., & Agabian, N. (1987). Trypanosome mRNAs have unusual “cap 4” structures acquired by addition of a spliced leader. Proceedings of the National Academy of Sciences, 84(23), 8190–8194.CrossRefGoogle Scholar
  24. Rı́us, C., Smith, J. D., Almendro, N., Langa, C., Botella, L. M., Marchuk, D. A., et al. (1998). Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood, 92(12), 4677–4690.PubMedGoogle Scholar
  25. Rand-weaver, M., Kawachi, H., & Ono, M. (1993). Evolution of structure of the growth hormone and prolactin family. In M. P. Schrebman, C. G. Scanes & P. K. Pang (Eds.), The endocrinology of growth development and metabolism in vertibrates (pp. 13–42). Academic Press: New York.Google Scholar
  26. Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467–470.CrossRefGoogle Scholar
  27. Sekine, S., Mizukami, T., Nishi, T., Kuwana, Y., Saito, A., Sato, M., Itoh, S., & Kawauchi, H. (1985). Cloning and expression of cDNA for salmon growth hormone in Escherichia coli. Proceedings of the National Academy of Sciences, 82(13), 4306–4310.Google Scholar
  28. Suzumoto, B. K., Schreck, C. B., & McIntyre, J. D. (1977). Relative Resistances of Three Transferrin Genotypes of Coho Salmon (Oncorhynchus kisutch) and their hematological responses to bacterial kidney disease. Journal of the Fisheries Research Board of Canada, 34(1), 1–8.Google Scholar
  29. Venkatesh, B., Kirkness, E. F., Loh, Y.-H., Halpern, A. L., Lee, A. P., Johnson, J., et al. (2007). Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biology, 5(4), e101.CrossRefGoogle Scholar
  30. Wittbrodt, J., Meyer, A., & Schartl, M. (1998). More genes in fish? BioEssays, 20(6), 511–515.CrossRefGoogle Scholar
  31. Yi, D. (2011). Who owns what? Private ownership and the public interest in recombinant DNA technology in the 1970s. Isis, 102(3), 446–474.CrossRefGoogle Scholar
  32. Young, R. A., Bloom, B. R., Grosskinsky, C. M., Ivanyi, J., Thomas, D., & Davis, R. W. (1985). Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proceedings of the National Academy of Sciences, 82(9), 2583–2587.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Marine Life Science, College of Ocean Science and TechnologyKorea Maritime and Ocean UniversityBusanSouth Korea

Personalised recommendations