Introduction to Molecular Biology



To understand marine biotechnology, it is necessary to understand the genes that determine an organism’s appearance and functions. This chapter will include a brief explanation of the genetics that directly informs biotechnology, as well how genetics has been applied to biotechnology.


  1. Avery, O. T., MacLeod, C. M., Lederberg, J., Dubos, R., & McCarty, M. (1944). Symposium February 2, 1979. The Journal of Experimental Medicine, 79(2), 137–158.CrossRefGoogle Scholar
  2. Bateson, W., & Mendel, G. 2013. Mendel’s principles of heredity. Courier Corporation.Google Scholar
  3. Chargaff, E. (1950). Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia, 6(6), 201–209.CrossRefGoogle Scholar
  4. Chargaff, E. (2012). The nucleic acids. Elsevier.Google Scholar
  5. Galau, G. A., Britten, R. J., & Davidson, E. H. (1974). A measurement of the sequence complexity of polysomal messenger RNA in sea urchin embryos. Cell, 2(1), 9–21.CrossRefGoogle Scholar
  6. Gamow, G. (1954). Possible relation between deoxyribonucleic acid and protein structures. Nature, 173(4398), 318.CrossRefGoogle Scholar
  7. Goding, J. W. (1996). Monoclonal antibodies: Principles and practice. Elsevier.Google Scholar
  8. Griffith, F. (1934). The serological classification of Streptococcus pyogenes. The Journal of Hygiene, 34(4), 542.PubMedPubMedCentralGoogle Scholar
  9. Groth, S. F. d. S., & Scheidegger, D. (1980). Production of monoclonal antibodies: Strategy and tactics. Journal of Immunological Methods, 35(1–2), 1–21.Google Scholar
  10. Hershey, A. D., Dixon, J., & Chase, M. (1953). Nucleic acid economy in bacteria infected with bacteriophage T2: I. Purine and pyrimidine composition. The Journal of General Physiology, 36(6), 777–789.Google Scholar
  11. Khazaeli, M., Conry, R. M., & LoBuglio, A. F. (1994). Human immune response to monoclonal antibodies. Journal of Immunotherapy with Emphasis on Tumor Immunology: Official Journal of the Society for Biological Therapy, 15(1), 42–52.CrossRefGoogle Scholar
  12. Kim, S.-K. (2016). Marine OMICS: Principles and applications. CRC Press.Google Scholar
  13. Lesk, A. M. (1969). Why does DNA contain thymine and RNA uracil? Journal of Theoretical Biology, 22(3), 537–540.CrossRefGoogle Scholar
  14. Mendel, G. (1996). Experiments in plant hybridization (1865). Verhandlungen des naturforschenden Vereins Brünn. Accessed on January 1, 2013. Available online:
  15. Mendel, G., Corcos, A. F., & Monaghan, F. V. (1993). Gregor mendel’s experiments on plant hybrids: A guided study. Rutgers University Press.Google Scholar
  16. Miescher, F., & Schmiedeberg, O. (1896). Physiologisch-chemische Untersuchungen über die Lachsmilch. Archiv für experimentelle Pathologie und Pharmakologie, 37(2–3), 100–155.Google Scholar
  17. Morgan, T. H., Bridges, C. & Sturtevant, A. (1925). The genetics of Drosophila melanogaster. Biblphia Genet, 2(1–262).Google Scholar
  18. Orel, V. (1996). Gregor Mendel: The first geneticist. USA: Oxford University Press.Google Scholar
  19. Pauling, L., & Delbrück, M. (1940). The nature of the intermolecular forces operative in biological processes. Science, 92(2378), 77–79.CrossRefGoogle Scholar
  20. Roberts, R. J., Belfort, M., Bestor, T., Bhagwat, A. S., Bickle, T. A., Bitinaite, J., et al. (2003). A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 31(7), 1805–1812.CrossRefGoogle Scholar
  21. Sutcliffe, J. G. (1978). pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Research, 5(8), 2721–2728.CrossRefGoogle Scholar
  22. Wang, K. (2018). DNA-based single-molecule electronics: From concept to function. Journal of functional Biomaterials, 9(1), 8.CrossRefGoogle Scholar
  23. Watson, J. (2012). The double helix. UK: Hachette.Google Scholar
  24. Watson, J. D., & Crick, F. H. (1953). The structure of DNA. In Cold Spring Harbor symposia on quantitative biology (pp. 123–131). Cold Spring Harbor Laboratory Press.Google Scholar
  25. Wood, W. B. (1966). Host specificity of DNA produced by Escherichia coli: Bacterial mutations affecting the restriction and modification of DNA. Journal of Molecular Biology, 16(1), 118-IN3.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Marine Life Science, College of Ocean Science and TechnologyKorea Maritime and Ocean UniversityBusanSouth Korea

Personalised recommendations