Advertisement

Diversity in Massively Multi-agent Systems: Concepts, Implementations, and Normal Accidents

  • Philip Feldman
  • Antonio BucchiaroneEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11422)

Abstract

Coordination for Transportation as a Service (TaaS) can be implemented on a spectrum, ranging from independent agents communicating exclusively through market exchanges to hybrid market/hierarchy approaches fixed hierarchical control systems. An overview of each approach is described and a detailed description of recent work in simulating a hybrid solution is presented. The use of diversity as a potential approach to reduce the impact of catastrophic Normal Accidents is discussed.

Keywords

Diversity Multi-agent systems Transportation as a Service Market systems Hierarchical control Distributed control 

Notes

Acknowledgments

We’d like to thank Aaron Dant of ASRC Federal for his contribution to the direction and development of the market section of this paper.

References

  1. 1.
  2. 2.
    Consumer spending on vehicles averaged 8427 in 2016, September 2017. https://www.bls.gov/opub/ted/2017/consumer-spending-on-vehicles-averaged-8427-in-2016.htm
  3. 3.
    Table 1. Median usual weekly earnings of full-time wage and salary workers by sex, quarterly averages, seasonally adjusted, October 2018. https://www.bls.gov/news.release/wkyeng.t01.htm
  4. 4.
    Abeywickrama, D.B., Bicocchi, N., Zambonelli, F.: SOTA: towards a general model for self-adaptive systems. In: Reddy, S., Drira, K. (eds.) WETICE, pp. 48–53. IEEE Computer Society (2012)Google Scholar
  5. 5.
    Andres Figliozzi, M., Mahmassani, H., Jaillet, P.: Framework for study of carrier strategies in auction-based transportation marketplace. Transp. Res. Rec. J. Transp. Res. Board 1854, 162–170 (2003)CrossRefGoogle Scholar
  6. 6.
    Bruni, R., Corradini, A., Gadducci, F., Lluch-Lafuente, A., Vandin, A.: A conceptual framework for adaptation. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 240–254. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28872-2_17CrossRefGoogle Scholar
  7. 7.
    Bucchiarone, A., Dulay, N., Lavygina, A., Marconi, A., Raik, H., Russo, A.: An approach for collective adaptation in socio-technical systems. In: IEEE SASO Workshops, pp. 43–48 (2015)Google Scholar
  8. 8.
    Bucchiarone, A., Mezzina, C.A., Pistore, M., Raik, H., Valetto, G.: Collective adaptation in process-based systems. In: SASO 2014, pp. 151–156 (2014)Google Scholar
  9. 9.
    Bucchiarone, A., De Sanctis, M., Marconi, A., Pistore, M., Traverso, P.: Design for adaptation of distributed service-based systems. In: Barros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9435, pp. 383–393. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48616-0_27CrossRefGoogle Scholar
  10. 10.
    Bucchiarone, A., De Sanctis, M., Marconi, A., Martinelli, A.: DeMOCAS: domain objects for service-based collective adaptive systems. In: Drira, K., et al. (eds.) ICSOC 2016. LNCS, vol. 10380, pp. 174–178. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-68136-8_19CrossRefGoogle Scholar
  11. 11.
    C. Pinciroli et al.: ARGoS: a modular, multi-engine simulator for heterogeneous swarm robotics. In: IROS, pp. 5027–5034 (2011)Google Scholar
  12. 12.
    Cabri, G., Puviani, M., Zambonelli, F.: Towards a taxonomy of adaptive agent-based collaboration patterns for autonomic service ensembles. In: 2011 International Conference on Collaboration Technologies and Systems, CTS 2011, Philadelphia, Pennsylvania, USA, 23–27 May 2011, pp. 508–515 (2011)Google Scholar
  13. 13.
    Clearfield, C., Tilcsik, A.: Meltdown: Why Our Systems Fail and What We Can Do About It. Atlantic Books, Penguin Canada, 20 March 2018. https://books.google.it/books/about/Meltdown.html?id=46krDwAAQBAJ&redir_esc=y
  14. 14.
    Crites, R.H., Barto, A.G.: Improving elevator performance using reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 1017–1023 (1996)Google Scholar
  15. 15.
    Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)CrossRefGoogle Scholar
  16. 16.
    Far, B.H., Wanyama, T., Soueina, S.O.: A negotiation model for large scale multi-agent systems. In: Proceedings of the 2006 IEEE International Conference on Information Reuse and Integration, IRI - 2006: Heuristic Systems Engineering, Waikoloa, Hawaii, USA, 16–18 September 2006, pp. 589–594 (2006)Google Scholar
  17. 17.
    Hölzl, M., Rauschmayer, A., Wirsing, M.: Engineering of software-intensive systems: state of the art and research challenges. In: Wirsing, M., Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and New Computing Paradigms. LNCS, vol. 5380, pp. 1–44. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89437-7_1CrossRefzbMATHGoogle Scholar
  18. 18.
    IBM: An architectural blueprint for autonomic computing. Technical report, IBM (2006)Google Scholar
  19. 19.
    Jones, A.T., McLean, C.R.: A proposed hierarchical control model for automated manufacturing systems. J. Manuf. Syst. 5(1), 15–25 (1986)CrossRefGoogle Scholar
  20. 20.
    Kirilenko, A., Kyle, A.S., Samadi, M., Tuzun, T.: The flash crash: high-frequency trading in an electronic market. J. Finan. 72(3), 967–998 (2017)CrossRefGoogle Scholar
  21. 21.
    Levi, P., Kernbach, S.: Symbiotic-Robot Organisms: Reliability, Adaptability, Evolution, vol. 7. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11692-6CrossRefzbMATHGoogle Scholar
  22. 22.
    Lima, D.: Uber caps prices ahead of Hurricane Irma’s arrival, September 2017. https://www.bizjournals.com/southflorida/news/2017/09/07/ride-hailing-service-caps-prices-ahead-of.html
  23. 23.
    Marconi, A., Pistore, M., Traverso, P.: Automated composition of web services: the ASTRO approach. IEEE Data Eng. Bull. 31(3), 23–26 (2008)Google Scholar
  24. 24.
    Mihajlović, M., Popovic̀ N.: Fooling a neural network with common adversarial noise. In: 2018 19th IEEE Mediterranean Electrotechnical Conference (MELECON), pp. 293–296, May 2018.  https://doi.org/10.1109/MELCON.2018.8379110
  25. 25.
    Nandiraju, S., Regan, A.: Freight transportation electronic marketplaces: a survey of the industry and exploration of important research issues (2008)Google Scholar
  26. 26.
    Noothigattu, R., et al.: A voting-based system for ethical decision making. CoRR abs/1709.06692 (2017). http://arxiv.org/abs/1709.06692
  27. 27.
    Perrow, C.: Normal Accidents: Living with High Risk Technologies-Updated Edition. Princeton University Press, Princeton (2011)CrossRefGoogle Scholar
  28. 28.
    Popov, S.: The tangle, p. 131 (2016)Google Scholar
  29. 29.
    Quintero, R., Barbera, T.: A real-time control system methodology for developing intelligent control systems. Technical report (1992)Google Scholar
  30. 30.
    Roth, J.: The application of the hierarchy system to on-line process control. J. Br. Inst. Radio Eng. 24(2), 117–125 (1962)Google Scholar
  31. 31.
    Saaty, T.L.: What is the analytic hierarchy process? In: Mitra, G., Greenberg, H.J., Lootsma, F.A., Rijkaert, M.J., Zimmermann, H.J. (eds.) Mathematical Models for Decision Support. NATO ASI Series, vol. 48, pp. 109–121. Springer, Heidelberg (1988).  https://doi.org/10.1007/978-3-642-83555-1_5CrossRefGoogle Scholar
  32. 32.
    Singh, M.G., Drew, S.A., Coales, J.F.: Comparisons of practical hierarchical control methods for interconnected dynamical systems. Automatica 11(4), 331–350 (1975)CrossRefGoogle Scholar
  33. 33.
    Tesfatsion, L.: Agent-based computational economics: modeling economies as complex adaptive systems. Inf. Sci. 149(4), 262–268 (2003)CrossRefGoogle Scholar
  34. 34.
    Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in self-adaptive systems. In: IEEE/ACM SEAMS 2011, pp. 202–207 (2011)Google Scholar
  35. 35.
    Wellman, M.P.: Market-oriented programming: some early lessons. In: Clearwater, S.H. (ed.) Market-Based Control: A Paradigm for Distributed Resource Allocation, pp. 74–95. World Scientific, Singapore (1996)CrossRefGoogle Scholar
  36. 36.
    Weyns, D., Malek, S., Andersson, J.: FORMS: unifying reference model for formal specification of distributed self-adaptive systems. TAAS 7(1), 8 (2012)CrossRefGoogle Scholar
  37. 37.
    Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation systems. In: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 2663–2668. IEEE (2016)Google Scholar
  38. 38.
    Zambonelli, F., Bicocchi, N., Cabri, G., Leonardi, L., Puviani, M.: On self-adaptation, self-expression, and self-awareness in autonomic service component ensembles. In: SASOW, pp. 108–113 (2011)Google Scholar
  39. 39.
    Zhong, C., DeLoach, S.A.: Runtime models for automatic reorganization of multi-robot systems. In: IEEE/ACM SEAMS 2011, pp. 20–29 (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of MarylandBaltimore CountyUSA
  2. 2.Fondazione Bruno KesslerTrentoItaly
  3. 3.ASRC FederalLaurelUSA

Personalised recommendations