Skip to main content

Injecting (Micro)Intelligence in the IoT: Logic-Based Approaches for (M)MAS

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11422))

Abstract

Pervasiveness of ICT resources along with the promise of ubiquitous intelligence is pushing hard both our demand and our fears of AI: demand mandates for the ability to inject (micro) intelligence ubiquitously, fears compel the behaviour of intelligent systems to be observable, explainable, and accountable. Whereas the first wave of the new “AI Era” was mostly heralded by sub-symbolic approaches, features like explainability are better provided by symbolic techniques. In this paper we focus on logic-based approaches, and discuss their potential in pervasive scenarios like the IoT and open (M)MAS along with our latest results in the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brownlee, J.: Clever Algorithms: Nature-inspired Programming Recipes (2011)

    Google Scholar 

  2. Calegari, R.: Micro-intelligence for the IoT: logic-based models and technologies. Ph.D. thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy (2018). https://doi.org/10.6092/unibo/amsdottorato/8521

  3. Calegari, R., Ciatto, G., Mariani, S., Denti, E., Omicini, A.: Micro-intelligence for the IoT: SE challenges and practice in LPaaS. In: 2018 IEEE International Conference on Cloud Engineering (IC2E 208), 17–20 April 2018, pp. 292–297. IEEE Computer Society (2018). https://doi.org/10.1109/IC2E.2018.00061

  4. Calegari, R., Denti, E., Dovier, A., Omicini, A.: Extending logic programming with labelled variables: model and semantics. Fundam. Inform. 161, 53–74 (2018). https://doi.org/10.3233/FI-2018-1695. Special Issue CILC 2016

    Article  MathSciNet  MATH  Google Scholar 

  5. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Towards logic programming as a service: experiments in tuProlog. In: Santoro, C., Messina, F., De Benedetti, M. (eds.) WOA 2016 – 17th Workshop “From Objects to Agents”, 29–30 July 2016. CEUR Workshop Proceedings, vol. 1664, pp. 91–99. Sun SITE Central Europe, RWTH Aachen University (2016). http://ceur-ws.org/Vol-1664/w14.pdf, Proceedings of the 17th Workshop “From Objects to Agents” co-located with 18th European Agent Systems Summer School (EASSS 2016)

  6. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic Programming as a Service (LPaaS): intelligence for the IoT. In: Fortino, G., et al. (eds.) 2017 IEEE 14th International Conference on Networking, Sensing and Control (ICNSC 2017), pp. 72–77. IEEE, May 2017. https://doi.org/10.1109/ICNSC.2017.8000070

  7. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service. Theory Pract. Log. Program. 18(5–6), 846–873 (2018). https://doi.org/10.1017/S1471068418000364. Special Issue “Past and Present (and Future) of Parallel and Distributed Computation in (Constraint) Logic Programming”

    Article  MathSciNet  MATH  Google Scholar 

  8. Calegari, R., Denti, E., Mariani, S., Omicini, A.: Logic programming as a service in multi-agent systems for the Internet of Things. Int. J. Grid Util. Comput. (in press)

    Google Scholar 

  9. Castelfranchi, C.: Modelling social action for AI agents. Artif. Intell. 103(1–2), 157–182 (1998). https://doi.org/10.1016/S0004-3702(98)00056-3

    Article  MATH  Google Scholar 

  10. Ciancarini, P.: Coordination models and languages as software integrators. ACM Comput. Surv. 28(2), 300–302 (1996). https://doi.org/10.1145/234528.234732

    Article  Google Scholar 

  11. Ciancarini, P., Omicini, A., Zambonelli, F.: Multiagent system engineering: the coordination viewpoint. In: Jennings, N.R., Lespérance, Y. (eds.) ATAL 1999. LNCS (LNAI), vol. 1757, pp. 250–259. Springer, Heidelberg (2000). https://doi.org/10.1007/10719619_19

    Chapter  Google Scholar 

  12. Ciatto, G., Mariani, S., Omicini, A., Zambonelli, F., Louvel, M.: Twenty years of coordination technologies: state-of-the-art and perspectives. In: Di Marzo Serugendo, G., Loreti, M. (eds.) COORDINATION 2018. LNCS, vol. 10852, pp. 51–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92408-3_3

    Chapter  Google Scholar 

  13. Crevier, D.: AI: The Tumultuous History of the Search for Artificial Intelligence. Basic Books, New York (1993)

    Google Scholar 

  14. Cusumano, M.: Cloud computing and SaaS as new computing platforms. Commun. ACM 53(4), 27–29 (2010). https://doi.org/10.1145/1721654.1721667

    Article  Google Scholar 

  15. Denti, E., Natali, A., Omicini, A.: Programmable coordination media. In: Garlan, D., Le Métayer, D. (eds.) COORDINATION 1997. LNCS, vol. 1282, pp. 274–288. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63383-9_86

    Chapter  Google Scholar 

  16. Denti, E., Natali, A., Omicini, A.: On the expressive power of a language for programming coordination media. In: 1998 ACM Symposium on Applied Computing (SAC 1998), Atlanta, GA, USA, 27 February–1 March 1998, pp. 169–177. ACM, New York (1998). https://doi.org/10.1145/330560.330665. Special Track on Coordination Models, Languages and Applications

  17. Familiar, B.: Microservices, IoT, and Azure: Leveraging DevOps and Microservice Architecture to Deliver SaaS Solutions, 1st edn. Apress, Berkely (2015)

    Book  Google Scholar 

  18. Fortino, G., Guerrieri, A., Russo, W.: Agent-oriented smart objects development. In: 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD 2012), pp. 907–912. IEEE, May 2012. https://doi.org/10.1109/CSCWD.2012.6221929

  19. Gabbay, D.M.: Labelled Deductive Systems, vol. 1. Oxford Logic Guides, vol. 33. Clarendon Press, Oxford (1996). http://global.oup.com/academic/product/labelled-deductive-systems-9780198538332

  20. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang. Syst. 7(1), 80–112 (1985). https://doi.org/10.1145/2363.2433

    Article  MATH  Google Scholar 

  21. Holzbaur, C.: Metastructures vs. attributed variables in the context of extensible unification. In: Bruynooghe, M., Wirsing, M. (eds.) PLILP 1992. LNCS, vol. 631, pp. 260–268. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55844-6_141

    Chapter  Google Scholar 

  22. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation of logic-based smart contracts for blockchain systems. In: Alferes, J.J., Bertossi, L., Governatori, G., Fodor, P., Roman, D. (eds.) RuleML 2016. LNCS, vol. 9718, pp. 167–183. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42019-6_11

    Chapter  Google Scholar 

  23. Jamont, J.P., Occello, M.: Meeting the challenges of decentralised embedded applications using multi-agent systems. Int. J. Agent-Oriented Softw. Eng. 5(1), 22–68 (2016). https://doi.org/10.1504/IJAOSE.2015.078435

    Article  Google Scholar 

  24. Kato, T., Chiba, R., Takahashi, H., Kinoshita, T.: Agent-oriented cooperation of IoT devices towards advanced logistics. In: 2015 IEEE 39th Annual Computer Software and Applications Conference (COMPSACW 2015), vol. 3, pp. 223–227, July 2015. https://doi.org/10.1109/COMPSAC.2015.237

  25. Khan, R., Khan, S.U., Zaheer, R., Khan, S.: Future internet: the Internet of Things architecture, possible applications and key challenges. In: 10th International Conference on Frontiers of Information Technology (FIT 2012), pp. 257–260, December 2012. https://doi.org/10.1109/FIT.2012.53

  26. Larrucea, X., Combelles, A., Favaro, J., Taneja, K.: Software engineering for the Internet of Things. IEEE Softw. 34(1), 24–28 (2017). https://doi.org/10.1109/MS.2017.28

    Article  Google Scholar 

  27. Loke, S.W.: Representing and reasoning with situations for context-aware pervasive computing: a logic programming perspective. Knowl. Eng. Rev. 19(3), 213–233 (2004). https://doi.org/10.1017/S0269888905000263

    Article  Google Scholar 

  28. Manzalini, A., Zambonelli, F.: Towards autonomic and situation-aware communication services: the CASCADAS vision. In: IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications (DIS 2006), pp. 383–388, June 2006. https://doi.org/10.1109/DIS.2006.71

  29. Oliya, M., Pung, H.K.: Towards incremental reasoning for context aware systems. In: Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi, S.M. (eds.) ACC 2011, Part I. CCIS, vol. 190, pp. 232–241. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22709-7_24

    Chapter  Google Scholar 

  30. Omicini, A.: SODA: societies and infrastructures in the analysis and design of agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, vol. 1957, pp. 185–193. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44564-1_12

    Chapter  Google Scholar 

  31. Omicini, A.: Formal ReSpecT in the A&A perspective. Electron. Notes Theor. Comput. Sci. 175(2), 97–117 (2007). https://doi.org/10.1016/j.entcs.2007.03.006. 5th International Workshop on Foundations of Coordination Languages and Software Architectures (FOCLASA 2006), CONCUR 2006, Bonn, Germany, 31 August 2006. Post-proceedings

    Article  Google Scholar 

  32. Omicini, A., Denti, E.: From tuple spaces to tuple centres. Sci. Comput. Program. 41(3), 277–294 (2001). https://doi.org/10.1016/S0167-6423(01)00011-9

    Article  MATH  Google Scholar 

  33. Omicini, A., Denti, E., Natali, A.: Agent coordination and control through logic theories. In: Gori, M., Soda, G. (eds.) AI*IA 1995. LNCS, vol. 992, pp. 439–450. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60437-5_43

    Chapter  Google Scholar 

  34. Omicini, A., Mariani, S.: Agents & multiagent systems: en route towards complex intelligent systems. Intell. Artif. 7(2), 153–164 (2013). https://doi.org/10.3233/IA-130056. Special Issue Celebrating 25 years of the Italian Association for Artificial Intelligence

    Article  Google Scholar 

  35. Omicini, A., Ricci, A., Viroli, M.: Agens Faber: toward a theory of artefacts for MAS. Electron. Notes Theor. Comput. Sci. 150(3), 21–36 (2006). https://doi.org/10.1016/j.entcs.2006.03.003

    Article  Google Scholar 

  36. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008). https://doi.org/10.1007/s10458-008-9053-x. Special Issue on Foundations, Advanced Topics and Industrial Perspectives of Multi-Agent Systems

    Article  Google Scholar 

  37. Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts: environment-based coordination for intelligent agents. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 1, pp. 286–293. ACM, New York, 19–23 July 2004. https://doi.org/10.1109/AAMAS.2004.10070

  38. Omicini, A., Ricci, A., Zaghini, N.: Distributed workflow upon linkable coordination artifacts. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 228–246. Springer, Heidelberg (2006). https://doi.org/10.1007/11767954_15

    Chapter  Google Scholar 

  39. Omicini, A., Zambonelli, F.: Coordination for Internet application development. Auton. Agents Multi-Agent Syst. 2(3), 251–269 (1999). https://doi.org/10.1023/A:1010060322135. Special Issue: Coordination Mechanisms for Web Agents

    Article  Google Scholar 

  40. Omicini, A., Zambonelli, F.: MAS as complex systems: a view on the role of declarative approaches. In: Leite, J., Omicini, A., Sterling, L., Torroni, P. (eds.) DALT 2003. LNCS (LNAI), vol. 2990, pp. 1–16. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25932-9_1

    Chapter  Google Scholar 

  41. Savaglio, C., Fortino, G., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M.: Agent-based computing in the Internet of Things: a survey. In: Ivanović, M., Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić, M. (eds.) IDC 2017. SCI, vol. 737, pp. 307–320. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-66379-1_27

    Chapter  Google Scholar 

  42. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016). https://doi.org/10.1038/nature16961

    Article  Google Scholar 

  43. Spanoudakis, N., Moraitis, P.: Engineering ambient intelligence systems using agent technology. IEEE Intell. Syst. 30(3), 60–67 (2015). https://doi.org/10.1109/MIS.2015.3

    Article  Google Scholar 

  44. Tan, L., Wang, N.: Future internet: the Internet of Things. In: 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE 2010), vol. 5, pp. V376–V380, August 2010. https://doi.org/10.1109/ICACTE.2010.5579543

  45. Viroli, M., Omicini, A.: Coordination as a service. Fundam. Inform. 73(4), 507–534 (2006). http://content.iospress.com/articles/fundamenta-informaticae/fi73-4-04. Special Issue: Best papers of FOCLASA 2002

    MathSciNet  MATH  Google Scholar 

  46. Xiang, C., Li, X.: General analysis on architecture and key technologies about Internet of Things. In: IEEE International Conference on Computer Science and Automation Engineering (CSAE 2012), pp. 325–328, June 2012. https://doi.org/10.1109/ICSESS.2012.6269471

  47. Zambonelli, F.: Key abstractions for IoT-oriented software engineering. IEEE Softw. 34(1), 38–45 (2017). https://doi.org/10.1109/MS.2017.3

    Article  Google Scholar 

  48. Zambonelli, F., Omicini, A.: Challenges and research directions in agent-oriented software engineering. Auton. Agents Multi-Agent Syst. 9(3), 253–283 (2004). https://doi.org/10.1023/B:AGNT.0000038028.66672.1e. Special Issue: Challenges for Agent-Based Computing

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Omicini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Omicini, A., Calegari, R. (2019). Injecting (Micro)Intelligence in the IoT: Logic-Based Approaches for (M)MAS. In: Lin, D., Ishida, T., Zambonelli, F., Noda, I. (eds) Massively Multi-Agent Systems II. MMAS 2018. Lecture Notes in Computer Science(), vol 11422. Springer, Cham. https://doi.org/10.1007/978-3-030-20937-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20937-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20936-0

  • Online ISBN: 978-3-030-20937-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics