Skip to main content

Biomechanics and Spinal Modelling

  • Chapter
  • First Online:
Spinal Anatomy
  • 2249 Accesses

Abstract

Among the essential biomechanical functions of the spine are those of maintaining a stable posture and of allowing movements during walking, activities of daily living or when practicing a sport. This chapter addresses geometric and biomechanical modelling for both basic knowledge and clinical issues related to spine disorders, their prevention and management.

Geometric modelling of the skeleton from biplanar X-rays allows quantitative 3D analysis in the erect position. This load bearing posture is characterized by maintaining head above the pelvis. Compensation strategies take place to maintain that constraint, such as pelvic retroversion or cervical lordosis. Progressive understanding of these mechanisms should have clinical impact.

Large-scale analysis also progressively provides new biomarkers, such as a severity index for early detection of a progressive scoliosis.

Biomechanical modelling takes into account not only the geometry but also the mechanical characteristics of each material in each region of the model. Dedicated software then allows to simulate different types of forces exerted on this structure and to compute the mechanical response, in terms of displacements, local strain and global deformation, and mechanical stresses which, if they are excessive, cause the damage to this system. Such models can drastically reduce the design time of an implant, by sensitivity studies that allow understanding the impact of implants design parameters. Subject-specific modelling opens up promising prospects for helping to plan treatments that consider the specificities of each individual.

The spine is an essential component of the musculoskeletal system. A gradual evolution has emerged over the last 30 years, from a very local view of the area of direct interest (functional unit or extended vertebral segment) to the global vision considering the longitudinal skeleton as a whole submitted to gravity loads and muscular forces. Advances in barycentremetry analysis, in personalized muscle modelling and in muscular control modelling, should lead to a better understanding of the interaction between postural and/or muscular troubles and spine disorders.

Thus, modelling provides valuable insights for a better, earlier and more accurate diagnosis, and for a quantitative assessment of the effect of treatments. The better understanding of the mechanisms of degradation with individual specificities should be a source of major progress and breakthrough innovations in prevention and therapeutic management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adam C, Rouch P, Skalli W. Inter-lamellar shear resistance confers compressive stiffness in the intervertebral disc: an image-based modelling study on the bovine caudal disc. J Biomech. 2015;48(16):4303–8.

    Article  Google Scholar 

  2. Prot M, Saletti D, Pattofatto S, Bousson V, Laporte S. Links between mechanical behavior of cancellous bone and its microstructural properties under dynamic loading. J Biomech. 2015;48(3):498–503.

    Article  CAS  Google Scholar 

  3. Dubousset J, Charpak G, Dorion I, Skalli W, Lavaste F, Deguise J, Kalifa G, Ferey S. A new 2D and 3D imaging approach to musculoskeletal physiology and pathology with low-dose radiation and the standing position: the EOS system. Bull Acad Natl Med. 2005;2:287–97.

    Google Scholar 

  4. Pomero V, Mitton D, Laporte S, De Guise JA, Skalli W. Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech. 2004;3:240–7.

    Article  Google Scholar 

  5. Humbert L, Guise JA, Aubert B, Godbout B, Skalli W. 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys. 2009;31:681–7.

    Article  CAS  Google Scholar 

  6. Skalli W. Stéréoradiographie basse dose EOS: de la recherche à la routine clinique. Resuscitation. 2011;100:241–53.

    Google Scholar 

  7. Amabile C, Pillet H, Lafage V, Barrey C, JM V, Skalli W. A new quasi-invariant parameter characterizing the postural alignment of young asymptomatic adults. Eur Spine J. 2016;25(11):3666–74.

    Article  Google Scholar 

  8. Perdriolle R. La scoliose, son étude tridimensionnelle. Paris: Maloine éditeur; 1979. 144p.

    Google Scholar 

  9. Steib JP, Dumas R, Mitton D, Skalli W. Surgical correction of scoliosis by in situ contouring: a detorsion analysis. Spine. 2004;29(2):193–9.

    Article  Google Scholar 

  10. Courvoisier A, Drevelle X, Vialle R, Dubous Set J, Skalli W. 3D analysis of brace treatment in idiopathic scoliosis. Eur Spine J. 2013;22(11):2427–32.

    Article  Google Scholar 

  11. Lebel DE, Alaubaidi Z, Shin EJ, Howard A, Zeller R. Three dimensional analysis of brace biomechanical efficacy for patients with AIS. Eur Spine J. 2013;22(11):2445–8.

    Article  Google Scholar 

  12. Ilharreborde B, Sebag G, Skalli W, Mazda K. Adolescent idiopathic scoliosis treated with posteromedial translation: radiologic evaluation with a 3D low-dose system. Eur Spine J. 2013;22(10):2335.

    Article  CAS  Google Scholar 

  13. Vergari C, Courtois I, Ebermeyer E, Boulous SA H, Vialle R, Skalli W. Experimental validation of a patient-specific model of orthotic action in adolescent idiopathic scoliosis. Eur Spine J. 2016;25(10):3049–55.

    Article  Google Scholar 

  14. Vergari C, Abelin-Genevois K, Kohler R, Dre Velle X, Ebermeyer E, Courtois I, Dubousset J, Skalli W A preliminary validation of a severity index for early detection of progressive adolescent idiopathic Scoliosis. Scoliosis Research Society 49th annual meeting, 2014; Anchorage, Alaska, USA; 2014.

    Google Scholar 

  15. Ferrero E, Lafage R, Challier V, Diebo B, Gui Gui P, Mazda K, Schwab F, Skalli W, Lafage V. Clinical and stereoradiographic analysis of adult spinal deformity with and without rotatory subluxation. Orthop Traumatol Surg Res. 2015;101(5):613–8.

    Article  CAS  Google Scholar 

  16. Venanciolima L Contribution à la modélisation biomécanique personnalisée du rachis lombaire intact et instrumenté. Thèse de doctorat Ecole nationale supérieure d’arts et métiers ENSAM; 2014.

    Google Scholar 

  17. Robin S, Skalli W, Lavaste F. Influence of geometrical factors on the behavior of lumbar spine segments: a finite element analysis. Eur Spine J. 1994;3(2):84–90.

    Article  CAS  Google Scholar 

  18. Laville A, Laporte S, Skalli W. Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns. J Biomech. 2009;42:1409–15.

    Article  CAS  Google Scholar 

  19. Lafage V, Gangnet N, Sénégas J, Lavaste F, Skalli W. New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine. 2007;32:1706–13.

    Article  Google Scholar 

  20. Charles YP, Persohn S, Steib JP, Mazel C, Skalli W. Influence of an auxiliary facet system on lumbar spine biomechanics. Spine. 2011;36:690–9.

    Article  Google Scholar 

  21. Prud’homme M, Barrios C, Rouch P, Charles YP, Steib JP, Skalli W. Clinical outcomes and complications after pedicle-anchored dynamic or hybrid lumbar spine stabilization: a systematic literature review. J Spinal Disord Tech. 2015;28(8):E439–48.

    Article  Google Scholar 

  22. Lafage V, Dubousset J, Lavaste F, Skalli W. 3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg. 2004;9(1–2):17–25.

    Article  CAS  Google Scholar 

  23. Lafon Y, Lafage V, Steib JP, Dubousset J, Skal Li W. In vivo distribution of spinal intervertebral stiffness based on clinical flexibility tests. Spine. 2010;35:186–93.

    Article  Google Scholar 

  24. Vergari C, Dubois G, Vialle R, Gennisson JL, Tanter M, Dubousset J, Rouch P, Skalli W. Lumbar annulus fibrosus biomechanical characterization in healthy children by ultrasound shear wave elastography. Eur Radiol. 2016;26(4):1213–7.

    Article  Google Scholar 

  25. Travert C, Jolivet E, Sapindebrosses E, Mit Ton D, Skalli W. Sensitivity of patient-specific vertebral finite element model from low dose imaging to material properties and loading conditions. Med Biol Eng Comput. 2011;49:1355–61.

    Article  Google Scholar 

  26. Keaveny TM, Mcclung MR, Genant HK, Zan Chetta JR, Kendler D, Brown JP, Goemaere S, Recknor C, Brandi ML, Eastell R, Kopperdahl DL, Engelke K, Fuerst T, Radcliffe HS, Libanati C. Femoral and vertebral strength improvements in postmenopausal women with osteoporosis treated with denosumab. J Bone Miner Res. 2014;29(1):158–65.

    Article  CAS  Google Scholar 

  27. Kinzl M, Schwiedrzik J, Zysset PK, Pahr DH. An experimentally validated finite element method for augmented vertebral bodies. Clin Biomech (Bristol, Avon). 2013;28(1):15–22 5.

    Article  Google Scholar 

  28. Choisne J, Valiadis JM, Travert C, Rouch P, Skalli W. Vertebral strength prediction under anterior compressive force using a finite element model. Comput Methods Biomech Biomed Engin. 2015;18(Suppl 1):1900–1. 21st Congress of the European Society of Biomechanics 2015; Prague, Czech Republic.

    Article  Google Scholar 

  29. Travert C. Estimation du risque de fracture ostéoporotique du rachis thoraco-lombaire par un modèle en élément finis personnalisé. Thèse de doctorat. Ecole nationale supérieure d’arts et métiers ENSAM; 2012.

    Google Scholar 

  30. Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369:1512–21.

    Article  CAS  Google Scholar 

  31. Pezowicz C, Glowacki M. The mechanical properties of human ribs in young adult. Acta Bioeng Biomech. 2012;14:53–60.

    PubMed  Google Scholar 

  32. Zhu Y. In vivo study on children of the mechanical behavior of thorax and the mechanical properties of ribs. Biomechanics. Thèse Université Claude Bernard Lyon I; 2014.

    Google Scholar 

  33. El Fegoun AB, Schwab F, Gamez L, Champain N, Skalli W, Farcy JP. Center of gravity and radiographic posture analysis: a preliminary review of adult volunteers and adult patients affected by scoliosis. Spine. 2005;30(13):1535–40.

    Article  Google Scholar 

  34. Gangnet N, Pomero V, Dumas R, Skalli W, Vital JM. Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Surg Radiol Anat. 2003;25(5–6):424–33.

    Article  CAS  Google Scholar 

  35. Steffen JS, Obeid I, Aurouer N, Hauger O, Vital JM, Dubousset J, Skalli W. 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J. 2010;19:760–7.

    Article  Google Scholar 

  36. Pillet H, Bonnet X, Lavaste F, Skalli W. Evaluation of force plate-less estimation of the trajectory of the Centre of pressure during gait. Comparison of two anthropometric models. Gait Posture. 2010;31:147–52.

    Article  Google Scholar 

  37. Sandoz B, Laporte S, Skalli W, Mitton D. Subject-specific body segment parameters’ estimation using biplanar X-rays: a feasibility study. Comput Methods Biomech Biomed Engin. 2010;13:649–54.

    Article  Google Scholar 

  38. Nérot A, Choisne J, Amabile C, Travert C, Pil Let H, Wang X, Skalli W. A 3D reconstruction method of the body envelope from biplanar X-rays: evaluation of its accuracy and reliability. J Biomech. 2015;48(16):4322–6.

    Article  Google Scholar 

  39. Choisne J, Amabile C, Nérot A, Haschaka T, Travert C, Pillet H, Skalli W. Upper body center of mass location affects the factor of risk for vertebral fractures proceedings of ASBMR (American Society for Bone and Mineral Research) meeting 2015; Seattle, Washington, USA; 2015.

    Google Scholar 

  40. Moal B, Bronsard N, Raya JG, Vital JM, Schwab F, Skalli W, Lafage V. Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity. World J Orthop. 2015;6(9):727–37.

    Article  Google Scholar 

  41. Li F, Laville A, Bonneau D, Laporte S, Skalli W. Study on cervical muscle volume by means of three-dimensional reconstruction. J Magn Reson Imaging. 2014;39(6):14116.

    Google Scholar 

  42. Dubois G, Kheireddine W, Vergari C, Bonneau D, Thoreux P, Rouch P, Tanter M, Gennisson JL, Skalli W. Reliable protocol for shear wave elastography of lower limb muscles at rest and during passive stretching. Ultrasound Med Biol. 2015;41(9):2284–91.

    Article  Google Scholar 

  43. Dreischarf M, Shiraziadl A, Arjmand N, Rohlmann A, Schmidt H. Estimation of loads on human lumbar spine: a review of in vivo and computational model studies. J Biomech. 2016;49(6):833–45.

    Article  Google Scholar 

  44. Pomero V, Lavaste F, Imbert G, Skalli W. A proprioception-based regulation model to estimate the trunk muscle forces. Comput Methods Biomech Biomed Engin. 2004;7(6):331–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

It is difficult to thank everyone involved in the research mentioned in this chapter. Thank you to the team of the ENSAM Biomechanics Laboratory, now the Georges Charpak Institute of Human Biomechanics, as well as the clinical and industrial partners of this research.

This research is benefited from financial support under the ParisTech biomecAM Chair in subject-specific modelling, with the support of the Yves Cotrel Foundation for research in spinal pathology, the Protéor company, Société Générale and the Covéa group. This Chair allows basic research, which is essential to progress. Thanks to the institutional supports and partners of the European VPHOP project, the FUI STEREOS + and DEXEOS projects and the CORSIN project.

Beyond these references and the rich international scientific literature on the subject, the reader will be able to refer to the PhDs on Spine research carried out at ENSAM on various aspects, in order to deepen the aspects addressed in this document of biomechanics and spine modelling, both by engineers and by clinicians: W. Skalli (1983), F. Lavaste (1990 state thesis), S. Robin (1992), N. Maurel (1993), W. Koubaa (1995), JL. Descrimes (1995), S. Veron (1997), P. Leborgne (1998), A. Templier (1998), N. Bertholon (1999), C. Lecire (1999), A. Mitulescu (2001), V. Pomero (2002), R. Dumas (2002), V. Lafage (2002), B. Fréchède (2003), Ph. Dupont (2004), S. Campana (2004), N. Champain (2004), O. Gille (2006), Y. Lafon (2006), MA. Rousseau (2007), S. Champain (2008), T. Mosnier (2008), E. Sapin (2008), A. Laville (2010), C. Barrey (2011), X. Drevelle (2011), J. S. Steffen (2011), A. Courvoisier (2012), B. Ilharreborde (2012), Y. P. Charles (2012), C. Travert (2013), B. Moal (2014), L. Venancio (2014), M. Prud’homme (2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Skalli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skalli, W., Mitton, D., Rouch, P., Dubousset, J. (2020). Biomechanics and Spinal Modelling. In: Vital, J., Cawley, D. (eds) Spinal Anatomy . Springer, Cham. https://doi.org/10.1007/978-3-030-20925-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20925-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20924-7

  • Online ISBN: 978-3-030-20925-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics