Skip to main content

Novel Texture Descriptor Family for Face Recognition

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11509))

Included in the following conference series:

  • 1118 Accesses


This paper presents a novel image descriptor family. The shaped local binary patterns are an extension of the popular local binary patterns (LBPs). It takes into consideration larger neighbourhoods of the central pixel. The main novelty is that this descriptor allows using varying shapes of the neighbourhood instead of just one point. This property ensures better robustness and gives the opportunity to fine-tune the descriptor for a given task. We evaluate the descriptor on the face recognition task in the frame of an application for recognition of real-world face images. The results on two standard face corpora show improved performance over the basic LBP method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    We used \(S-LBP_{8,5,6}\) configuration.


  1. Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004).

    Chapter  Google Scholar 

  2. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)

    Article  Google Scholar 

  3. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  4. Lenc, L., Král, P.: Unconstrained facial images: database for face recognition under real-world conditions. In: Lagunas, O.P., Alcántara, O.H., Figueroa, G.A. (eds.) MICAI 2015. LNCS (LNAI), vol. 9414, pp. 349–361. Springer, Cham (2015).

    Chapter  Google Scholar 

  5. Lenc, L., Král, P.: Local binary pattern based face recognition with automatically detected fiducial points. Integr. Comput.-Aided Eng. 23(2), 129–139 (2016).

    Article  Google Scholar 

  6. Li, W., Fu, P., Zhou, L.: Face recognition method based on dynamic threshold local binary pattern. In: Proceedings of the 4th International Conference on Internet Multimedia Computing and Service, pp. 20–24. ACM (2012)

    Google Scholar 

  7. Nanni, L., Lumini, A., Brahnam, S.: Survey on LBP based texture descriptors for image classification. Expert Syst. Appl. 39(3), 3634–3641 (2012)

    Article  Google Scholar 

  8. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: 1994 Proceedings of the 12th IAPR International Conference on Pattern Recognition. Vol. 1-Conference A: Computer Vision & Image Processing, vol. 1, pp. 582–585. IEEE (1994)

    Google Scholar 

  9. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  10. Smith, J.R.: Integrated spatial and feature image systems: retrieval, analysis and compression. Ph.D. thesis, Columbia University (1997)

    Google Scholar 

  11. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  12. Wagner, A., Wright, J., Ganesh, A., Zhou, Z., Mobahi, H., Ma, Y.: Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 34(2), 372–386 (2012)

    Article  Google Scholar 

  13. Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recogn. 23(8), 905–910 (1990)

    Article  Google Scholar 

  14. Wolf, L., Hassner, T., Taigman, Y., et al.: Descriptor based methods in the wild. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  15. Yao, B., Ai, H., Ijiri, Y., Lao, S.: Domain-partitioning rankboost for face recognition. In: 2007 IEEE International Conference on Image Processing, ICIP 2007, vol. 1, p. I-129. IEEE (2007)

    Google Scholar 

  16. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533–544 (2010)

    Article  MathSciNet  Google Scholar 

  17. Zhang, W., Shan, S., Gao, W., Chen, X., Zhang, H.: Local Gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: 2005 Tenth IEEE International Conference on Computer Vision, ICCV 2005, vol. 1, pp. 786–791. IEEE (2005)

    Google Scholar 

Download references


This work has been partly supported by the project LO1506 of the Czech Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Ladislav Lenc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Král, P., Lenc, L. (2019). Novel Texture Descriptor Family for Face Recognition. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics