Abstract
Named entity recognition (NER) is one of the tasks in natural language processing that can greatly benefit from the use of external knowledge sources. We propose a named entity recognition framework composed of knowledge-based feature extractors and a deep learning model including contextual word embeddings, long short-term memory (LSTM) layers and conditional random fields (CRF) inference layer. We use an entity linking module to integrate our system with Wikipedia. The combination of effective neural architecture and external resources allows us to obtain state-of-the-art results on recognition of Polish proper names. We evaluate our model on the data from PolEval 2018 (http://2018.poleval.pl/) NER challenge on which it outperforms other methods, reducing the error rate by 22.4% compared to the winning solution.
Keywords
- Named entity recognition
- Wikipedia
- Entity linking
This is a preview of subscription content, access via your institution.
Buying options


References
Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: 27th International Conference on Computational Linguistics, COLING 2018, pp. 1638–1649 (2018)
Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)
Borchmann, Ł., Gretkowski, A., Graliński, F.: Approaching nested named entity recognition with parallel LSTM-CRFs. In: Proceedings of AI and NLP Workshop Day 2018 (2018)
Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs. Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)
Cilibrasi, R.L., Vitanyi, P.M.: The Google similarity distance. IEEE Trans. Knowl. Data Eng. 19(3), 370–383 (2007)
Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167. ACM (2008)
Dozat, T.: Incorporating Nesterov momentum into ADAM. In: ICLR (2016)
Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)
Graliński, F., Jassem, K., Marcińczuk, M., Wawrzyniak, P.: Named entity recognition in machine anonymization. In: Recent Advances in Intelligent Information Systems (2009)
Huang, Z., Xu, W., Yu, K.: Bidirectional LSTM-CRF models for sequence tagging. CoRR abs/1508.01991 (2015)
Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural architectures for named entity recognition. In: Proceedings of NAACL-HLT, pp. 260–270 (2016)
Liu, L., et al.: Empower sequence labeling with task-aware neural language model. arXiv preprint arXiv:1709.04109 (2017)
Ma, X., Hovy, E.: End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1064–1074 (2016)
Marcińczuk, M., Kocoń, J., Gawor, M.: Recognition of named entities for Polish-comparison of deep learning and conditional random fields approaches. In: Ogrodniczuk, M., Kobyliński, Ł. (eds.) Proceedings of the PolEval 2018 Workshop, pp. 77–92. Institute of Computer Science, Polish Academy of Science (2018)
Marcińczuk, M., Kocoń, J., Janicki, M.: Liner2-a customizable framework for proper names recognition for Polish. In: Bembenik, R., Skonieczny, L., Rybinski, H., Kryszkiewicz, M., Niezgodka, M. (eds.) Intelligent Tools for Building a Scientific Information Platform. SCI, vol. 467, pp. 231–253. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35647-6_17
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
Miłkowski, M.: Developing an open-source, rule-based proofreading tool. Softw. Pract. Exp. 40(7), 543–566 (2010)
Milne, D., Witten, I.H.: An open-source toolkit for mining Wikipedia. Artif. Intell. 194, 222–239 (2013)
Pennington, J., Socher, R., Manning, C.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
Peters, M., Ammar, W., Bhagavatula, C., Power, R.: Semi-supervised sequence tagging with bidirectional language models. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1756–1765 (2017)
Peters, M., et al.: Deep contextualized word representations. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 2227–2237 (2018)
Piskorski, J.: Named-entity recognition for Polish with SProUT. In: Bolc, L., Michalewicz, Z., Nishida, T. (eds.) IMTCI 2004. LNCS (LNAI), vol. 3490, pp. 122–133. Springer, Heidelberg (2005). https://doi.org/10.1007/11558637_13
Piskorski, J., Schäfer, U., Xu, F.: Shallow processing with unification and typed feature structures-foundations and applications. Knstliche Intelligenz 1(1), 17–23 (2004)
Pohl, A.: Knowledge-based named entity recognition in Polish. In: Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 145–151. IEEE (2013)
Przepiórkowski, A., Banko, M., Górski, R.L., Lewandowska-Tomaszczyk, B.: National Corpus of Polish. Polish Scientific Publishers PWN, Warsaw (2012)
Radziszewski, A.: A tiered CRF tagger for Polish. Intelligent Tools for Building a Scientific Information Platform, vol. 467, pp. 215–230. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35647-6_16
Rei, M.: Semi-supervised multitask learning for sequence labeling. arXiv preprint arXiv:1704.07156 (2017)
Reimers, N., Gurevych, I.: Optimal hyperparameters for deep LSTM-networks for sequence labeling tasks. arXiv preprint arXiv:1707.06799 (2017)
dos Santos, C., Guimaraes, V., Niterói, R., de Janeiro, R.: Boosting named entity recognition with neural character embeddings. In: Proceedings of NEWS 2015 the Fifth Named Entities Workshop, p. 25 (2015)
Waszczuk, J.: NERF - named entity recognition tool based on linear-chain CRFs (2012). http://zil.ipipan.waw.pl/Nerf
Wolinski, M., Milkowski, M., Ogrodniczuk, M., Przepiórkowski, A.: PoliMorf: a (not so) new open morphological dictionary for Polish. In: LREC, pp. 860–864 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Dadas, S. (2019). Combining Neural and Knowledge-Based Approaches to Named Entity Recognition in Polish. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-20912-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20911-7
Online ISBN: 978-3-030-20912-4
eBook Packages: Computer ScienceComputer Science (R0)