Advertisement

Analyzing Control Parameters in DISH

Conference paper
  • 882 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11508)

Abstract

This paper presents the analysis of the difference in control parameter adaptation between jSO and DISH algorithms. The DISH algorithm uses a distance based parameter adaptation and therefore, is based on the distance between successful offspring and its parent solution rather than on the difference in their corresponding objective function values. The DISH algorithm outperforms the jSO algorithm on the CEC 2015 benchmark set and the adaptation behavior on functions, where the performance is significantly different, is analyzed and commented. The findings from this paper might be used in the future design of jSO based single-objective optimization algorithms.

Keywords

Differential Evolution jSO DISH Control parameter Scaling factor Crossover rate 

References

  1. 1.
    Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces, vol. 3. ICSI, Berkeley (1995)Google Scholar
  2. 2.
    Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential evolution. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 71–78. IEEE, June 2013Google Scholar
  3. 3.
    Brest, J., Maučec, M.S., Bošković, B.: Single objective real-parameter optimization: algorithm jSO. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1311–1318. IEEE, June 2017Google Scholar
  4. 4.
    Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., Zamuda, A.: Distance based parameter adaptation for differential evolution. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE, November 2017Google Scholar
  5. 5.
    Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., Zamuda, A.: Distance based parameter adaptation for success-history based differential evolution. Swarm and Evolutionary Computation (2018, in press).  https://doi.org/10.1016/j.swevo.2018.10.013. ISSN 2210–6502
  6. 6.
    Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2015)CrossRefGoogle Scholar
  7. 7.
    Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)CrossRefGoogle Scholar
  8. 8.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE, July 2014Google Scholar
  9. 9.
    Brest, J., Maučec, M.S., Bošković, B.: iL-SHADE: Improved L-SHADE algorithm for single objective real-parameter optimization. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 1188–1195. IEEE, July 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations