Skip to main content

Improving Population Diversity Through Gene Methylation Simulation

Part of the Lecture Notes in Computer Science book series (LNAI,volume 11508)

Abstract

During the runtime of many evolutionary algorithms, the diversity of the population starts out high and then rapidly diminishes as the algorithm converges. The diversity will directly influence the algorithm’s ability to perform effective exploration of the problem space. In most cases if exploration is required in the latter stages of the algorithm, there may be insufficient diversity to allow for this. This paper proposes an algorithm that will better maintain diversity throughout the runtime of the algorithm which will in turn allow for better exploration during the latter portion of the algorithm’s run.

Keywords

  • Evolutionary algorithms
  • Population diversity
  • Exploration

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Črepinšek, M., Liu, S., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. 45, 35 (2013)

    CrossRef  Google Scholar 

  2. Eiben, A.E., Schoenauer, M.: Evolutionary computing. Inf. Process. Lett. 82, 1–6 (2002)

    CrossRef  MathSciNet  Google Scholar 

  3. Ferreira, C.: Gene expression programming in problem solving. In: Roy, R., Köppen, M., Ovaska, S., Furuhashi, T., Hoffmann, F. (eds.) Soft Computing and Industry, pp. 635–653. Springer, London (2002). https://doi.org/10.1007/978-1-4471-0123-9_54

    CrossRef  Google Scholar 

  4. Kornienko, A.E., Guenzl, P.M., Barlow, D.P., Pauler, F.M.: Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 11, 59 (2013)

    CrossRef  Google Scholar 

  5. Law, J.A., Jacobsen, S.E.: Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204 (2010)

    CrossRef  Google Scholar 

  6. Whitley, D., Rana, S., Heckendorn, R.B.: Island model genetic algorithms and linearly separable problems. In: Corne, D., Shapiro, J.L. (eds.) AISB EC 1997. LNCS, vol. 1305, pp. 109–125. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0027170

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duncan A. Coulter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cilliers, M., Coulter, D.A. (2019). Improving Population Diversity Through Gene Methylation Simulation. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)