Skip to main content

Low-Resolution Face Recognition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

Whilst recent face-recognition (FR) techniques have made significant progress on recognising constrained high-resolution web images, the same cannot be said on natively unconstrained low-resolution images at large scales. In this work, we examine systematically this under-studied FR problem, and introduce a novel Complement Super-Resolution and Identity (CSRI) joint deep learning method with a unified end-to-end network architecture. We further construct a new large-scale dataset TinyFace of native unconstrained low-resolution face images from selected public datasets, because none benchmark of this nature exists in the literature. With extensive experiments we show there is a significant gap between the reported FR performances on popular benchmarks and the results on TinyFace, and the advantages of the proposed CSRI over a variety of state-of-the-art FR and super-resolution deep models on solving this largely ignored FR scenario. The TinyFace dataset is released publicly at: https://qmul-tinyface.github.io/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://megaface.cs.washington.edu/results/facescrub.html.

  2. 2.

    The SphereFace method fails to converge in fine-tuning on TinyFace even with careful parameter selection. We hence deployed the CelebA-trained SphereFace model.

References

  1. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE TPAMI (2006)

    Google Scholar 

  2. Ahonen, T., Rahtu, E., Ojansivu, V., Heikkila, J.: Recognition of blurred faces using local phase quantization. In: ICPR (2008)

    Google Scholar 

  3. Bansal, A., Nanduri, A., Castillo, C., Ranjan, R., Chellappa, R.: UMDFaces: an annotated face dataset for training deep networks. arXiv (2016)

    Google Scholar 

  4. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE TPAMI (1997)

    Google Scholar 

  5. Best-Rowden, L., Han, H., Otto, C., Klare, B.F., Jain, A.K.: Unconstrained face recognition: identifying a person of interest from a media collection. IEEE Trans. Inf. Forensics Secur. 9, 2144–2157 (2014)

    Article  Google Scholar 

  6. Biswas, S., Bowyer, K.W., Flynn, P.J.: Multidimensional scaling for matching low-resolution facial images. In: BTAS (2010)

    Google Scholar 

  7. Biswas, S., Bowyer, K.W., Flynn, P.J.: Multidimensional scaling for matching low-resolution face images. IEEE TPAMI 34, 2019–2030 (2012)

    Article  Google Scholar 

  8. Chen, D., Cao, X., Wen, F., Sun, J.: Blessing of dimensionality: high-dimensional feature and its efficient compression for face verification. In: CVPR (2013)

    Google Scholar 

  9. Cheng, Z., Zhu, X., Gong, S.: Surveillance face recognition challenge. arXiv preprint arXiv:1804.09691 (2018)

  10. Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Color face recognition for degraded face images. IEEE TSMC (Part B) 39, 1217–1230 (2009)

    Google Scholar 

  11. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  12. Fookes, C., Lin, F., Chandran, V., Sridharan, S.: Evaluation of image resolution and super-resolution on face recognition performance. J. Vis. Commun. Image Represent. 23, 75–93 (2012)

    Article  Google Scholar 

  13. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE TPAMI (2001)

    Google Scholar 

  14. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. IVC 28, 807–813 (2010)

    Article  Google Scholar 

  15. Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain super-resolution for face recognition. IEEE TIP 12(5), 597–606 (2003)

    Google Scholar 

  16. Guo, Y., Zhang, L., Hu, Y., He, X., Gao, J.: MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 87–102. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_6

    Chapter  Google Scholar 

  17. He, X., Cai, D., Yan, S., Zhang, H.J.: Neighborhood preserving embedding. In: ICCV (2005)

    Google Scholar 

  18. Hennings-Yeomans, P.H., Baker, S., Kumar, B.V.: Simultaneous super-resolution and feature extraction for recognition of low-resolution faces. In: CVPR (2008)

    Google Scholar 

  19. Hu, P., Ramanan, D.: Finding tiny faces. arXiv (2016)

    Google Scholar 

  20. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. University of Massachusetts, Technical report (2007)

    Google Scholar 

  21. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE TPAMI 33(1), 117–128 (2011)

    Article  Google Scholar 

  22. Kemelmacher-Shlizerman, I., Seitz, S.M., Miller, D., Brossard, E.: The MegaFace benchmark: 1 million faces for recognition at scale. In: CVPR (2016)

    Google Scholar 

  23. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: CVPR (2016)

    Google Scholar 

  24. Klare, B.F., et al.: Pushing the frontiers of unconstrained face detection and recognition: IARPA Janus benchmark A. In: CVPR (2015)

    Google Scholar 

  25. Lei, Z., Ahonen, T., Pietikäinen, M., Li, S.Z.: Local frequency descriptor for low-resolution face recognition. In: FG (2011)

    Google Scholar 

  26. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. arXiv (2017)

    Google Scholar 

  27. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  28. Nech, A., Kemelmacher-Shlizerman, I.: Level playing field for million scale face recognition. arXiv preprint arXiv:1705.00393 (2017)

  29. Ng, H.W., Winkler, S.: A data-driven approach to cleaning large face datasets. In: ICIP (2014)

    Google Scholar 

  30. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: BMVC (2015)

    Google Scholar 

  31. Phillips, P.J., et al.: FRVT 2006 and ICE 2006 large-scale experimental results. IEEE TPAMI 32(5), 831–846 (2010)

    Article  Google Scholar 

  32. Ren, C.X., Dai, D.Q., Yan, H.: Coupled kernel embedding for low-resolution face image recognition. IEEE TIP 21(8), 3770–3783 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Samaria, F.S., Harter, A.C.: Parameterisation of a stochastic model for human face identification. In: IEEE Workshop on Applications of Computer Vision (1994)

    Google Scholar 

  34. Shekhar, S., Patel, V.M., Chellappa, R.: Synthesis-based recognition of low resolution faces. In: IJCB (2011)

    Google Scholar 

  35. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: FG, pp. 53–58 (2002)

    Google Scholar 

  36. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: NIPS (2014)

    Google Scholar 

  37. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: CVPR (2017)

    Google Scholar 

  38. Torralba, A., Fergus, R., Freeman, W.T.: 80 million tiny images: a large data set for nonparametric object and scene recognition. IEEE TPAMI 30(11), 1958–1970 (2008)

    Article  Google Scholar 

  39. Wang, D., Otto, C., Jain, A.K.: Face search at scale. IEEE TPAMI 39, 1122–1136 (2016)

    Article  Google Scholar 

  40. Wang, X., Tang, X.: Face hallucination and recognition. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 486–494. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44887-X_58

    Chapter  Google Scholar 

  41. Wang, Z., Chang, S., Yang, Y., Liu, D., Huang, T.S.: Studying very low resolution recognition using deep networks. In: CVPR (2016)

    Google Scholar 

  42. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  43. Wong, Y., Sanderson, C., Mau, S., Lovell, B.C.: Dynamic amelioration of resolution mismatches for local feature based identity inference. In: ICPR (2010)

    Google Scholar 

  44. Yang, S., Luo, P., Loy, C.C., Tang, X.: WIDER FACE: a face detection benchmark. In: CVPR (2016)

    Google Scholar 

  45. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv (2014)

    Google Scholar 

  46. Zhang, N., Paluri, M., Taigman, Y., Fergus, R., Bourdev, L.: Beyond frontal faces: improving person recognition using multiple cues. In: CVPR (2015)

    Google Scholar 

  47. Zhu, X.: Semantic structure discovery in surveillance videos. Ph.D. thesis, Queen Mary University of London (2016)

    Google Scholar 

  48. Zou, W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE TIP 21(1), 327–340 (2012)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Royal Society Newton Advanced Fellowship Programme (NA150459), Innovate UK Industrial Challenge Project on Developing and Commercialising Intelligent Video Analytics Solutions for Public Safety (98111-571149), Vision Semantics Ltd, and SeeQuestor Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z., Zhu, X., Gong, S. (2019). Low-Resolution Face Recognition. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics