Abstract
This paper presents new efficient solutions to the rolling shutter camera absolute pose problem. Unlike the state-of-the-art polynomial solvers, we approach the problem using simple and fast linear solvers in an iterative scheme. We present several solutions based on fixing different sets of variables and investigate the performance of them thoroughly. We design a new alternation strategy that estimates all parameters in each iteration linearly by fixing just the non-linear terms. Our best 6-point solver, based on the new alternation technique, shows an identical or even better performance than the state-of-the-art R6P solver and is two orders of magnitude faster. In addition, a linear non-iterative solver is presented that requires a non-minimal number of 9 correspondences but provides even better results than the state-of-the-art R6P. Moreover, all proposed linear solvers provide a single solution while the state-of-the-art R6P provides up to 20 solutions which have to be pruned by expensive verification.
This work was supported by the European Regional Development Fund under the project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000468), EC H2020-ICT-731970 LADIO project, ESI Fund, OP RDE programme under the project International Mobility of Researchers MSCA-IF at CTU No. CZ.02.2.69/0.0/0.0/17_050/0008025, and Grant-in-Aid for Scientific Research (Grant No. 16H02851) of the Ministry of Education, Culture, Sports, Science and Technology of Japan. A part of this work was done when Zuzana Kukelova was visiting the National Institute of Informatics (NII), Japan, funded in part by the NII MOU grant.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hedborg, J., Forssén, P.E., Felsberg, M., Ringaby, E.: Rolling shutter bundle adjustment. In: CVPR, pp. 1434–1441 (2012)
Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. In: IEEE ISMAR, ISMAR 2009, pp.83–86 (2009)
Saurer, O., Koser, K., Bouguet, J.Y., Pollefeys, M.: Rolling shutter stereo. In: ICCV, pp. 465–472 (2013)
Grunert, J.A.: Das Pothenotische Problem in erweiterter Gestalt nebst über seine Anwendungen in der Geodäsie (1841)
Haralick, R., Lee, D., Ottenburg, K., Nolle, M.: Analysis and solutions of the three point perspective pose estimation problem. In: CVPR, pp. 592–598 (1991)
Ameller, M.A., Triggs, B., Quan, L.: Camera pose revisited: new linear algorithms. In: 14eme Congres Francophone de Reconnaissance des Formes et Intelligence Artificielle. Paper in French 2002 (2002)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81, 155–166 (2009)
Quan, L., Lan, Z.: Linear n-point camera pose determination. IEEE PAMI 21, 774–780 (1999)
Triggs, B.: Camera pose and calibration from 4 or 5 known 3D points. In: ICCV, vol. 1, pp. 278–284 (1999)
Wu, Y., Hu, Z.: PnP problem revisited. J. Math. Imaging Vis. 24, 131–141 (2006)
Zhi, L., Tang, J.: A complete linear 4-point algorithm for camera pose determination (2002)
Meingast, M., Geyer, C., Sastry, S.: Geometric models of rolling-shutter cameras. Computing Research Repository abs/cs/050 (2005)
Ait-Aider, O., Andreff, N., Lavest, J.M., Martinet, P.: Simultaneous object pose and velocity computation using a single view from a rolling shutter camera. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 56–68. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_5
Hedborg, J., Ringaby, E., Forssen, P.E., Felsberg, M.: Structure and motion estimation from rolling shutter video. In: ICCV Workshops, pp. 17–23 (2011)
Magerand, L., Bartoli, A., Ait-Aider, O., Pizarro, D.: Global optimization of object pose and motion from a single rolling shutter image with automatic 2D-3D matching. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 456–469. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_33
Henrion, D., Lasserre, J.B., Lofberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)
Albl, C., Kukelova, Z., Pajdla, T.: R6P - rolling shutter absolute pose problem. In: CVPR, pp. 2292–2300 (2015)
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, New York (2005). https://doi.org/10.1007/b138611
Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_23
Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47, 2280–2292 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kukelova, Z., Albl, C., Sugimoto, A., Pajdla, T. (2019). Linear Solution to the Minimal Absolute Pose Rolling Shutter Problem. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-20893-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20892-9
Online ISBN: 978-3-030-20893-6
eBook Packages: Computer ScienceComputer Science (R0)