Skip to main content

Linear Solution to the Minimal Absolute Pose Rolling Shutter Problem

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

This paper presents new efficient solutions to the rolling shutter camera absolute pose problem. Unlike the state-of-the-art polynomial solvers, we approach the problem using simple and fast linear solvers in an iterative scheme. We present several solutions based on fixing different sets of variables and investigate the performance of them thoroughly. We design a new alternation strategy that estimates all parameters in each iteration linearly by fixing just the non-linear terms. Our best 6-point solver, based on the new alternation technique, shows an identical or even better performance than the state-of-the-art R6P solver and is two orders of magnitude faster. In addition, a linear non-iterative solver is presented that requires a non-minimal number of 9 correspondences but provides even better results than the state-of-the-art R6P. Moreover, all proposed linear solvers provide a single solution while the state-of-the-art R6P provides up to 20 solutions which have to be pruned by expensive verification.

This work was supported by the European Regional Development Fund under the project IMPACT (reg. no. CZ.02.1.01/0.0/0.0/15_003/0000468), EC H2020-ICT-731970 LADIO project, ESI Fund, OP RDE programme under the project International Mobility of Researchers MSCA-IF at CTU No. CZ.02.2.69/0.0/0.0/17_050/0008025, and Grant-in-Aid for Scientific Research (Grant No. 16H02851) of the Ministry of Education, Culture, Sports, Science and Technology of Japan. A part of this work was done when Zuzana Kukelova was visiting the National Institute of Informatics (NII), Japan, funded in part by the NII MOU grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hedborg, J., Forssén, P.E., Felsberg, M., Ringaby, E.: Rolling shutter bundle adjustment. In: CVPR, pp. 1434–1441 (2012)

    Google Scholar 

  2. Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. In: IEEE ISMAR, ISMAR 2009, pp.83–86 (2009)

    Google Scholar 

  3. Saurer, O., Koser, K., Bouguet, J.Y., Pollefeys, M.: Rolling shutter stereo. In: ICCV, pp. 465–472 (2013)

    Google Scholar 

  4. Grunert, J.A.: Das Pothenotische Problem in erweiterter Gestalt nebst über seine Anwendungen in der Geodäsie (1841)

    Google Scholar 

  5. Haralick, R., Lee, D., Ottenburg, K., Nolle, M.: Analysis and solutions of the three point perspective pose estimation problem. In: CVPR, pp. 592–598 (1991)

    Google Scholar 

  6. Ameller, M.A., Triggs, B., Quan, L.: Camera pose revisited: new linear algorithms. In: 14eme Congres Francophone de Reconnaissance des Formes et Intelligence Artificielle. Paper in French 2002 (2002)

    Google Scholar 

  7. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  8. Lepetit, V., Moreno-Noguer, F., Fua, P.: EPnP: an accurate O(n) solution to the PnP problem. Int. J. Comput. Vis. 81, 155–166 (2009)

    Article  Google Scholar 

  9. Quan, L., Lan, Z.: Linear n-point camera pose determination. IEEE PAMI 21, 774–780 (1999)

    Article  Google Scholar 

  10. Triggs, B.: Camera pose and calibration from 4 or 5 known 3D points. In: ICCV, vol. 1, pp. 278–284 (1999)

    Google Scholar 

  11. Wu, Y., Hu, Z.: PnP problem revisited. J. Math. Imaging Vis. 24, 131–141 (2006)

    Article  MathSciNet  Google Scholar 

  12. Zhi, L., Tang, J.: A complete linear 4-point algorithm for camera pose determination (2002)

    Google Scholar 

  13. Meingast, M., Geyer, C., Sastry, S.: Geometric models of rolling-shutter cameras. Computing Research Repository abs/cs/050 (2005)

    Google Scholar 

  14. Ait-Aider, O., Andreff, N., Lavest, J.M., Martinet, P.: Simultaneous object pose and velocity computation using a single view from a rolling shutter camera. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 56–68. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_5

    Chapter  Google Scholar 

  15. Hedborg, J., Ringaby, E., Forssen, P.E., Felsberg, M.: Structure and motion estimation from rolling shutter video. In: ICCV Workshops, pp. 17–23 (2011)

    Google Scholar 

  16. Magerand, L., Bartoli, A., Ait-Aider, O., Pizarro, D.: Global optimization of object pose and motion from a single rolling shutter image with automatic 2D-3D matching. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 456–469. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_33

    Chapter  Google Scholar 

  17. Henrion, D., Lasserre, J.B., Lofberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24, 761–779 (2009)

    Article  MathSciNet  Google Scholar 

  18. Albl, C., Kukelova, Z., Pajdla, T.: R6P - rolling shutter absolute pose problem. In: CVPR, pp. 2292–2300 (2015)

    Google Scholar 

  19. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn. Springer, New York (2005). https://doi.org/10.1007/b138611

    Book  MATH  Google Scholar 

  20. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_23

    Chapter  Google Scholar 

  21. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Marín-Jiménez, M.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognit. 47, 2280–2292 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Kukelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kukelova, Z., Albl, C., Sugimoto, A., Pajdla, T. (2019). Linear Solution to the Minimal Absolute Pose Rolling Shutter Problem. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics