A Temporally-Aware Interpolation Network for Video Frame Inpainting
- 1.2k Downloads
Abstract
We propose the first deep learning solution to video frame inpainting, a more challenging but less ambiguous task than related problems such as general video inpainting, frame interpolation, and video prediction. We devise a pipeline composed of two modules: a bidirectional video prediction module and a temporally-aware frame interpolation module. The prediction module makes two intermediate predictions of the missing frames, each conditioned on the preceding and following frames respectively, using a shared convolutional LSTM-based encoder-decoder. The interpolation module blends the intermediate predictions, using time information and hidden activations from the video prediction module to resolve disagreements between the predictions. Our experiments demonstrate that our approach produces more accurate and qualitatively satisfying results than a state-of-the-art video prediction method and many strong frame inpainting baselines. Our code is available at https://github.com/sunxm2357/TAI_video_frame_inpainting.
Keywords
Video inpainting Video prediction Frame interpolationNotes
Acknowledgements
This work is partly supported by ARO W911NF-15-1-0354, DARPA FA8750-17-2-0112 and DARPA FA8750-16-C-0168. It reflects the opinions and conclusions of its authors, but not the funding agents.
Supplementary material
Supplementary material 1 (mp4 46259 KB)
References
- 1.Borzi, A., Ito, K., Kunisch, K.: Optimal control formulation for determining optical flow. SIAM J. Sci. Comput. 24(3), 818–847 (2003)MathSciNetCrossRefGoogle Scholar
- 2.Chen, K., Lorenz, D.A.: Image sequence interpolation using optimal control. J. Math. Imaging Vis. 41(3), 222–238 (2011)MathSciNetCrossRefGoogle Scholar
- 3.Cheung, V., Frey, B.J., Jojic, N.: Video epitomes. Int. J. Comput. Vis. 76(2), 141–152 (2008)CrossRefGoogle Scholar
- 4.Ebdelli, M., Le Meur, O., Guillemot, C.: Video inpainting with short-term windows: application to object removal and error concealment. IEEE Trans. Image Process. 24(10), 3034–3047 (2015)MathSciNetCrossRefGoogle Scholar
- 5.Granados, M., Kim, K.I., Tompkin, J., Kautz, J., Theobalt, C.: Background inpainting for videos with dynamic objects and a free-moving camera. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 682–695. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_49CrossRefGoogle Scholar
- 6.Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)Google Scholar
- 7.Jia, J., Tai-Pang, W., Tai, Y.W., Tang, C.K.: Video repairing: inference of foreground and background under severe occlusion. In: IEEE Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
- 8.Jia, Y.T., Hu, S.M., Martin, R.R.: Video completion using tracking and fragment merging. Vis. Comput. 21(8–10), 601–610 (2005)CrossRefGoogle Scholar
- 9.Kalchbrenner, N., et al.: Video pixel networks. In: International Conference on Machine Learning (2017)Google Scholar
- 10.Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: IEEE International Conference on Computer Vision, pp. 2556–2563 (2011)Google Scholar
- 11.Liu, Z., Yeh, R., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: International Conference on Computer Vision (ICCV), vol. 2 (2017)Google Scholar
- 12.Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image matching by simply watching video. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 434–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_26CrossRefGoogle Scholar
- 13.Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning. In: International Conference on Learning Representations (2017)Google Scholar
- 14.Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: International Conference on Learning Representations (2016)Google Scholar
- 15.Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (2018)Google Scholar
- 16.Newson, A., Almansa, A., Fradet, M., Gousseau, Y., Pérez, P.: Video inpainting of complex scenes. SIAM J. Imaging Sci. 7(4), 1993–2019 (2014)MathSciNetCrossRefGoogle Scholar
- 17.Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 261–270 (2017)Google Scholar
- 18.Patwardhan, K.A., Sapiro, G., Bertalmío, M.: Video inpainting under constrained camera motion. IEEE Trans. Image Process. 16(2), 545–553 (2007)MathSciNetCrossRefGoogle Scholar
- 19.Ranzato, M., Szlam, A., Bruna, J., Mathieu, M., Collobert, R., Chopra, S.: Video (language) modeling: a baseline for generative models of natural videos. arXiv preprint arXiv:1412.6604 (2014)
- 20.Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: International Conference on Pattern Recognition, vol. 3, pp. 32–36 (2004)Google Scholar
- 21.Shen, Y., Lu, F., Cao, X., Foroosh, H.: Video completion for perspective camera under constrained motion. In: International Conference on Pattern Recognition, vol. 3, pp. 63–66 (2006)Google Scholar
- 22.Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. CRCV-TR-12-01 (2012)Google Scholar
- 23.Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference On Machine Learning, pp. 843–852 (2015)Google Scholar
- 24.Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. In: International Conference on Learning Representations (2017)Google Scholar
- 25.Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)CrossRefGoogle Scholar
- 26.Werlberger, M., Pock, T., Unger, M., Bischof, H.: Optical flow guided TV-L1 video interpolation and restoration. In: International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 273–286 (2011)Google Scholar
- 27.Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: IEEE Conference on Computer Vision and Pattern Recognition (2004)Google Scholar