Skip to main content

Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

Automatic multi-class object detection in remote sensing images in unconstrained scenarios is of high interest for several applications including traffic monitoring and disaster management. The huge variation in object scale, orientation, category, and complex backgrounds, as well as the different camera sensors pose great challenges for current algorithms. In this work, we propose a new method consisting of a novel joint image cascade and feature pyramid network with multi-size convolution kernels to extract multi-scale strong and weak semantic features. These features are fed into rotation-based region proposal and region of interest networks to produce object detections. Finally, rotational non-maximum suppression is applied to remove redundant detections. During training, we minimize joint horizontal and oriented bounding box loss functions, as well as a novel loss that enforces oriented boxes to be rectangular. Our method achieves 68.16% mAP on horizontal and 72.45% mAP on oriented bounding box detection tasks on the challenging DOTA dataset, outperforming all published methods by a large margin (\(+6\)% and \(+12\)% absolute improvement, respectively). Furthermore, it generalizes to two other datasets, NWPU VHR-10 and UCAS-AOD, and achieves competitive results with the baselines even when trained on DOTA. Our method can be deployed in multi-class object detection applications, regardless of the image and object scales and orientations, making it a great choice for unconstrained aerial and satellite imagery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    \(P_6\) is a stride 2 sub-sampling of \(P_5\) used to propose regions for large objects. \(P_1\) is not computed due to its large memory footprint.

  2. 2.

    http://captain.whu.edu.cn/DOTAweb/evaluation.html.

References

  1. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Improving object detection with one line of code. In: ICCV (2017)

    Google Scholar 

  2. Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE TGRS 54, 7405–7415 (2016)

    Google Scholar 

  3. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks. In: NIPS (2016)

    Google Scholar 

  4. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  6. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object classes (VOC) challenge. IJCV 88, 303–338 (2010)

    Article  Google Scholar 

  7. Ghiasi, G., Fowlkes, C.C.: Laplacian pyramid reconstruction and refinement for semantic segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 519–534. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_32

    Chapter  Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  11. Hoiem, D., Chodpathumwan, Y., Dai, Q.: Diagnosing error in object detectors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 340–353. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_25

    Chapter  Google Scholar 

  12. Honari, S., Yosinski, J., Vincent, P., Pal, C.: Recombinator networks: learning coarse-to-fine feature aggregation. In: CVPR (2016)

    Google Scholar 

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  14. Lin, T., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  15. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Liu, K., Mattyus, G.: Fast multiclass vehicle detection on aerial images. IEEE TGRS Lett. 12, 1938–1942 (2015)

    Google Scholar 

  17. Liu, L., Pan, Z., Lei, B.: Learning a rotation invariant detector with rotatable bounding box. arXiv preprint arXiv:1711.09405 (2017)

  18. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  19. Ma, J., et al.: Arbitrary-oriented scene text detection via rotation proposals. IEEE Trans. Multimedia 20, 3111–3122 (2018)

    Article  Google Scholar 

  20. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  21. Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5

    Chapter  Google Scholar 

  22. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: CVPR (2017)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  24. Ross, G.: Fast R-CNN. In: CVPR (2015)

    Google Scholar 

  25. Shrivastava, A., Gupta, A., Girshick, R.: Training region-based object detectors with online hard example mining. In: CVPR (2016)

    Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICRL (2015)

    Google Scholar 

  27. Sommer, L.W., Schuchert, T., Beyerer, J.: Deep learning based multi-category object detection in aerial images. In: SPIE Defense and Security (2017)

    Google Scholar 

  28. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  29. Tang, T., Zhou, S., Deng, Z., Zou, H., Lei, L.: Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining. Remote Sens. 17(2), 336 (2017)

    Google Scholar 

  30. Xia, G., et al.: DOTA: a large-scale dataset for object detection in aerial images. In: CVPR (2018)

    Google Scholar 

  31. Yang, X., et al.: Automatic ship detection in remote sensing images from Google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens. 10, 132 (2018)

    Article  Google Scholar 

  32. Yang, X., Sun, H., Sun, X., Yan, M., Guo, Z., Fu, K.: Position detection and direction prediction for arbitrary-oriented ships via multiscale rotation region convolutional neural network. arXiv preprint arXiv:1806.04828 (2018)

  33. Zhao, H., Qi, X., Shen, X., Shi, J., Jia, J.: ICNet for real-time semantic segmentation on high-resolution images. arXiv preprint arXiv:1704.08545 (2017)

  34. Zhu, H., Chen, X., Dai, W., Fu, K., Ye, Q., Ji, X.: Orientation robust object detection in aerial images using deep convolutional neural network. In: ICIP (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Majid Azimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azimi, S.M., Vig, E., Bahmanyar, R., Körner, M., Reinartz, P. (2019). Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics