Skip to main content

A Trainable Multiplication Layer for Auto-correlation and Co-occurrence Extraction

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Included in the following conference series:

Abstract

In this paper, we propose a trainable multiplication layer (TML) for a neural network that can be used to calculate the multiplication between the input features. Taking an image as an input, the TML raises each pixel value to the power of a weight and then multiplies them, thereby extracting the higher-order local auto-correlation from the input image. The TML can also be used to extract co-occurrence from the feature map of a convolutional network. The training of the TML is formulated based on backpropagation with constraints to the weights, enabling us to learn discriminative multiplication patterns in an end-to-end manner. In the experiments, the characteristics of the TML are investigated by visualizing learned kernels and the corresponding output features. The applicability of the TML for classification and neural network interpretation is also evaluated using public datasets.

Supported by Qdai-jump Research Program and JSPS KAKENHI Grant Number JP17K12752 and JP17K19402.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amodei, D., et al.: Deep speech 2: end-to-end speech recognition in English and Mandarin. In: International Conference on Machine Learning, pp. 173–182. IMLS, New York (2016)

    Google Scholar 

  2. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover Publications, New York (1966)

    Google Scholar 

  3. Fujino, K., Mitani, Y., Fujita, Y., Hamamoto, Y., Sakaida, I.: Liver cirrhosis classification on M-mode ultrasound images by higher-order local auto-correlation features. J. Med. Bioeng. 3(1), 29–32 (2014)

    Google Scholar 

  4. Greenspan, H., van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35(5), 1153–1159 (2016)

    Article  Google Scholar 

  5. Hayashi, H., Shibanoki, T., Shima, K., Kurita, Y., Tsuji, T.: A recurrent probabilistic neural network with dimensionality reduction based on time-series discriminant component analysis. IEEE Trans. Neural Networks Learn. Syst. 26(12), 3021–3033 (2015)

    Article  MathSciNet  Google Scholar 

  6. Hu, E., Nosato, H., Sakanashi, H., Murakawa, M.: A modified anomaly detection method for capsule endoscopy images using non-linear color conversion and Higher-order Local Auto-Correlation (HLAC). In: Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5477–5480. IEEE, Osaka (2013)

    Google Scholar 

  7. Kobayashi, T.: Trainable co-occurrence activation unit for improving ConvNet. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1273–1277. IEEE, Calgary (2018)

    Google Scholar 

  8. Kobayashi, T., Otsu, N.: Action and simultaneous multiple-person identification using cubic higher-order local auto-correlation. In: Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 4, pp. 741–744. IEEE, Cambridge (2004)

    Google Scholar 

  9. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, University of Toronto (2009)

    Google Scholar 

  10. Kylberg, G.: The kylberg texture dataset v. 1.0. External report (Blue series) 35, Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, Uppsala, Sweden (2011)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Lin, M., Chen, Q., Yan, S.: Network in network. In: Proceedings of the International Conference on Learning Representations (ICLR), Banff, Canada (2014)

    Google Scholar 

  13. Ma, L., Lu, Z., Li, H.: Learning to answer questions from image using convolutional neural network. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, pp. 3567–3573 (2016)

    Google Scholar 

  14. Majumder, N., Poria, S., Gelbukh, A., Cambria, E.: Deep learning-based document modeling for personality detection from text. IEEE Intell. Syst. 32(2), 74–79 (2017)

    Article  Google Scholar 

  15. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)

    Article  Google Scholar 

  16. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML), Haifa, Israel, pp. 807–814 (2010)

    Google Scholar 

  17. Nakayama, H., Harada, T., Kuniyoshi, Y.: Global Gaussian approach for scene categorization using information geometry. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2336–2343. IEEE, San Francisco (2010)

    Google Scholar 

  18. Nosato, H., Sakanashi, H., Takahashi, E., Murakawa, M.: An objective evaluation method of ulcerative colitis with optical colonoscopy images based on higher order local auto-correlation features. In: Proceedings of the 11th International Symposium on Biomedical Imaging (ISBI), pp. 89–92. IEEE, Beijing (2014)

    Google Scholar 

  19. Otsu, N., Kurita, T.: A new scheme for practical flexible and intelligent vision systems. In: Proceedings of the IAPR Workshop on Computer Vision, pp. 431–435. IAPR, Tokyo (1988)

    Google Scholar 

  20. Shih, Y.F., Yeh, Y.M., Lin, Y.Y., Weng, M.F., Lu, Y.C., Chuang, Y.Y.: Deep co-occurrence feature learning for visual object recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu (2017)

    Google Scholar 

  21. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (ICLR), San Diego, CA (2015)

    Google Scholar 

  22. Tsuji, T., Bu, N., Fukuda, O., Kaneko, M.: A recurrent log-linearized Gaussian mixture network. IEEE Trans. Neural Networks 14(2), 304–316 (2003)

    Article  Google Scholar 

  23. Tsuji, T., Fukuda, O., Ichinobe, H., Kaneko, M.: A log-linearized Gaussian mixture network and its application to EEG pattern classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 29(1), 60–72 (1999)

    Article  Google Scholar 

  24. Uehara, K., Sakanashi, H., Nosato, H., Murakawa, M., Miyamoto, H., Nakamura, R.: Object detection of satellite images using multi-channel higher-order local autocorrelation, pp. 1339–1344 (2017)

    Google Scholar 

  25. Valle-Lisboa, J.C., Reali, F., Anastasía, H., Mizraji, E.: Elman topology with sigma-pi units: an application to the modeling of verbal hallucinations in schizophrenia. Neural Networks 18(7), 863–877 (2005)

    Article  Google Scholar 

  26. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report (2011)

    Google Scholar 

  27. Wang, Q., Li, P., Zhang, L.: G2DeNet: global Gaussian distribution embedding network and its application to visual recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2730–2739. IEEE, Honolulu (2017)

    Google Scholar 

  28. Weber, C., Wermter, S.: A self-organizing map of sigma-pi units. Neurocomputing 70(13), 2552–2560 (2007)

    Article  Google Scholar 

  29. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  30. Zhang, T., Kahn, G., Levine, S., Abbeel, P.: Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. In: Proceedings of the International Conference on Robotics and Automation (ICRA), pp. 528–535. IEEE, Stockholm (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Hayashi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 588 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hayashi, H., Uchida, S. (2019). A Trainable Multiplication Layer for Auto-correlation and Co-occurrence Extraction. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics