Skip to main content

Hybrid Diffusion: Spectral-Temporal Graph Filtering for Manifold Ranking

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Included in the following conference series:

  • 2037 Accesses

Abstract

State of the art image retrieval performance is achieved with CNN features and manifold ranking using a k-NN similarity graph that is pre-computed off-line. The two most successful existing approaches are temporal filtering, where manifold ranking amounts to solving a sparse linear system online, and spectral filtering, where eigen-decomposition of the adjacency matrix is performed off-line and then manifold ranking amounts to dot-product search online. The former suffers from expensive queries and the latter from significant space overhead. Here we introduce a novel, theoretically well-founded hybrid filtering approach allowing full control of the space-time trade-off between these two extremes. Experimentally, we verify that our hybrid method delivers results on par with the state of the art, with lower memory demands compared to spectral filtering approaches and faster compared to temporal filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://landmarkscvprw18.github.io/.

  2. 2.

    “Temporal” stems from conventional signal processing where signals are functions of “time”; while “spectral” is standardized also in graph signal processing.

  3. 3.

    https://github.com/ahmetius/diffusion-retrieval/.

References

  1. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: CVPR, June 2012

    Google Scholar 

  2. Bai, S., Bai, X., Tian, Q., Latecki, L.J.: Regularized diffusion process on bidirectional context for object retrieval. IEEE Trans. PAMI (2018)

    Google Scholar 

  3. Bai, S., Zhou, Z., Wang, J., Bai, X., Jan Latecki, L., Tian, Q.: Ensemble diffusion for retrieval. In: ICCV (2017)

    Google Scholar 

  4. Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall II: query expansion revisited. In: CVPR, June 2011

    Google Scholar 

  5. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: ICCV, October 2007

    Google Scholar 

  6. Chung, F.R.: Spectral Graph Theory, vol. 92. American Mathematical Society (1997)

    Google Scholar 

  7. Delvinioti, A., Jégou, H., Amsaleg, L., Houle, M.: Image retrieval with reciprocal and shared nearest neighbors. In: VISAPP, January 2014

    Google Scholar 

  8. Donoser, M., Bischof, H.: Diffusion processes for retrieval revisited. In: CVPR (2013)

    Google Scholar 

  9. Gordo, A., Almazan, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. IJCV 124(2) (2017)

    Article  MathSciNet  Google Scholar 

  10. Hackbusch, W.: Iterative Solution of Large Sparse Systems of Equations. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-4288-8

    Book  MATH  Google Scholar 

  11. Iscen, A., Avrithis, Y., Tolias, G., Furon, T., Chum, O.: Fast spectral ranking for similarity search. In: CVPR (2018)

    Google Scholar 

  12. Iscen, A., Tolias, G., Avrithis, Y., Furon, T., Chum, O.: Efficient diffusion on region manifolds: recovering small objects with compact CNN representations. In: CVPR (2017)

    Google Scholar 

  13. Jégou, H., Harzallah, H., Schmid, C.: A contextual dissimilarity measure for accurate and efficient image search. In: CVPR, June 2007

    Google Scholar 

  14. Joly, A., Buisson, O.: Logo retrieval with a contrario visual query expansion. In: ACM Multimedia, October 2009

    Google Scholar 

  15. Kalantidis, Y., Mellina, C., Osindero, S.: Cross-dimensional weighting for aggregated deep convolutional features. arXiv preprint arXiv:1512.04065 (2015)

  16. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: CVPR, June 2007

    Google Scholar 

  17. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization: improving particular object retrieval in large scale image databases. In: CVPR, June 2008

    Google Scholar 

  18. Qin, D., Gammeter, S., Bossard, L., Quack, T., Van Gool, L.: Hello neighbor: accurate object retrieval with k-reciprocal nearest neighbors. In: CVPR (2011)

    Google Scholar 

  19. Radenović, F., Iscen, A., Tolias, G., Avrithis, Y., Chum, O.: Revisiting Oxford and Paris: large-scale image retrieval benchmarking. In: CVPR (2018)

    Google Scholar 

  20. Radenović, F., Tolias, G., Chum, O.: Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. PAMI (2018)

    Google Scholar 

  21. Shen, X., Lin, Z., Brandt, J., Wu, Y.: Spatially-constrained similarity measure for large-scale object retrieval. IEEE Trans. PAMI 36(6), 1229–1241 (2014)

    Article  Google Scholar 

  22. Sivic, J., Zisserman, A.: Video Google: a text retrieval approach to object matching in videos. In: ICCV (2003)

    Google Scholar 

  23. Tolias, G., Jégou, H.: Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recogn. 47(10), 3466–3476 (2014)

    Article  Google Scholar 

  24. Tolias, G., Sicre, R., Jégou, H.: Particular object retrieval with integral max-pooling of CNN activations. ICLR (2016)

    Google Scholar 

  25. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applications. In: Proceedings of the IEEE International Conference on Data Mining, pp. 613–622 (2006)

    Google Scholar 

  26. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM (1997)

    Google Scholar 

  27. Zhang, S., Yang, M., Cour, T., Yu, K., Metaxas, D.N.: Query specific fusion for image retrieval. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, pp. 660–673. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_47

    Chapter  Google Scholar 

  28. Zhou, D., Weston, J., Gretton, A., Bousquet, O., Schölkopf, B.: Ranking on data manifolds. In: NIPS (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported by MSMT LL1303 ERC-CZ grant and the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Iscen .

Editor information

Editors and Affiliations

A General Derivation

A General Derivation

The derivation of our algorithm in Sect. 4.1 applies only to the particular function (filter) \(h_\alpha \) (3). Here, as in [11], we generalize to a much larger class of functions, that is, any function h that has a series expansion

$$\begin{aligned} h(A) = \sum _{i=0}^\infty c_i A^i. \end{aligned}$$
(24)

We begin with the same eigenvalue decomposition (6) of \(\mathcal {W}\) and, assuming that \(h(\mathcal {W})\) converges absolutely, its corresponding decomposition

$$\begin{aligned} h(\mathcal {W}) = U_1 h(\varLambda _1) U_1^{\!\top }+ U_2 h(\varLambda _2) U_2^{\!\top }, \end{aligned}$$
(25)

similar to (8), where \(U_1\), \(U_2\) have the same orthogonality properties (5).

Again, the first term is exactly the low-rank approximation that is used by spectral filtering, and the second is the approximation error

$$\begin{aligned} e_\alpha (\mathcal {W})&\mathrel {{\text {:=}}}U_2 h(\varLambda _2) U_2^{\!\top } \end{aligned}$$
(26)
$$\begin{aligned}&= \sum _{i=0}^\infty c_i U_2 \varLambda _2^i U_2^{\!\top } \end{aligned}$$
(27)
$$\begin{aligned}&= \sum _{i=0}^\infty c_i \left( U_2 \varLambda _2 U_2^{\!\top }\right) ^i - c_0 U_1 U_1^{\!\top } \end{aligned}$$
(28)
$$\begin{aligned}&= h(U_2 \varLambda _2 U_2^{\!\top }) - h(0) U_1 U_1^{\!\top }. \end{aligned}$$
(29)

Again, we have used the series expansion (24) of h in (27) and (29). Now, Eq. (28) is due to the fact that

$$\begin{aligned} (U_2 \varLambda _2 U_2^{\!\top })^i = U_2 \varLambda _2^i U_2^{\!\top } \end{aligned}$$
(30)

for \(i \ge 1\), as can be verified by induction, while for \(i = 0\),

$$\begin{aligned} U_2 \varLambda _2^0 U_2^{\!\top }= U_2 U_2^{\!\top }= I_n - U_1 U_1^{\!\top }= (U_2 \varLambda _2 U_2^{\!\top })^0 - U_1 U_1^{\!\top }. \end{aligned}$$
(31)

In both (30) and (31) we have used the orthogonality properties (5).

Finally, combining (25), (29) and (6), we have proved the following.

Theorem 2

Assuming the series expansion (24) of transfer function h and the eigenvalue decomposition (6) of the symmetrically normalized adjacency matrix \(\mathcal {W}\), and given that \(h(\mathcal {W})\) converges absolutely, it is decomposed as

$$\begin{aligned} h(\mathcal {W}) = U_1 g(\varLambda _1) U_1^{\!\top }+ h(\mathcal {W}- U_1 \varLambda _1 U_1^{\!\top }), \end{aligned}$$
(32)

where

$$\begin{aligned} g(A) \mathrel {{\text {:=}}}h(A) - h(\mathbf {O}) \end{aligned}$$
(33)

for \(n \times n\) real symmetric matrix A. For \(h = h_\alpha \) and for \(x \in [-1,1]\) in particular, \(g_\alpha (x) \mathrel {{\text {:=}}}h_\alpha (x) - h_\alpha (0) = (1 - \alpha ) \alpha x / (1 - \alpha x)\).

This general derivation explains where the general definition of function g (33) is coming from in (16) corresponding to our treatment of \(h_\alpha \) in Sect. 4.1.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iscen, A., Avrithis, Y., Tolias, G., Furon, T., Chum, O. (2019). Hybrid Diffusion: Spectral-Temporal Graph Filtering for Manifold Ranking. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics