Skip to main content

Parallel Convolutional Networks for Image Recognition via a Discriminator

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11361))

Included in the following conference series:

Abstract

In this paper, we introduce a simple but quite effective recognition framework dubbed D-PCN, aiming at enhancing feature extracting ability of CNN. The framework consists of two parallel CNNs, a discriminator and an extra classifier which takes integrated features from parallel networks and gives final prediction. The discriminator is core which drives parallel networks to focus on different regions and learn different representations. The corresponding training strategy is introduced to ensures utilization of discriminator. We validate D-PCN with several CNN models on benchmark datasets: CIFAR-100, and ImageNet, D-PCN enhances all models. In particular it yields state of the art performance on CIFAR-100 compared with related works. We also conduct visualization experiment on fine-grained Stanford Dogs dataset to verify our motivation. Additionally, we apply D-PCN for segmentation on PASCAL VOC 2012 and also find promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://pytorch.org/.

  2. 2.

    We think it may explain why parallel networks can localize cat in Sect. 4.3, because subnetworks catch enough information to know what’s dog.

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS (2012)

    Google Scholar 

  2. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  3. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  4. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  5. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. PAMI 40, 834 (2017)

    Article  Google Scholar 

  7. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  8. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. In: ICLR (2015)

    Google Scholar 

  9. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  10. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: CVPR (2017)

    Google Scholar 

  11. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  12. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  13. Chrabaszcz, P., Loshchilov, I., Hutter, F.: A downsampled variant of imageNet as an alternative to the CIFAR datasets. arXiv preprint arXiv:1707.08819 (2017)

  14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  15. Lin, M., Chen, Q., Yan, S.: Network in network. In: ICLR (2014)

    Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  17. Zagoruyko, S., Komodakis, N.: Wide residual networks. In: BMVC (2016)

    Google Scholar 

  18. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: CVPR (2017)

    Google Scholar 

  19. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  20. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  21. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: Stanford dogs. In: CVPR Workshop (2011)

    Google Scholar 

  22. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: ICCV (2015)

    Google Scholar 

  24. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: NIPS (2017)

    Google Scholar 

  25. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: ICML (2013)

    Google Scholar 

  28. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: ICCV (2015)

    Google Scholar 

  29. Yan, Z., et al.: HD-CNN: hierarchical deep convolutional neural networks for large scale visual recognition. In: ICCV (2015)

    Google Scholar 

  30. Murthy, V.N., Singh, V., Chen, T., Manmatha, R., Comaniciu, D.: Deep decision network for multi-class image classification. In: CVPR (2016)

    Google Scholar 

  31. Saihui Hou, X.L., Wang, Z.: DualNet: learn complementary features for image recognition. In: ICCV (2017)

    Google Scholar 

  32. Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  33. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: ICML Workshop (2013)

    Google Scholar 

  34. Srivastava, N., Salakhutdinov, R.R.: Discriminative transfer learning with tree-based priors. In: NIPS (2013)

    Google Scholar 

  35. Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: Artificial Intelligence and Statistics, pp. 562–570 (2015)

    Google Scholar 

  36. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks. arXiv preprint arXiv:1412.6830 (2014)

  37. Chen, Y., Li, J., Xiao, H., Jin, X., Yan, S., Feng, J.: Dual path networks. In: NIPS (2017)

    Google Scholar 

  38. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: AISTATS (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Peng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1083 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, S., Peng, G. (2019). Parallel Convolutional Networks for Image Recognition via a Discriminator. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20887-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20886-8

  • Online ISBN: 978-3-030-20887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics