Skip to main content

Traversing Latent Space Using Decision Ferns

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11361))

Included in the following conference series:

Abstract

The practice of transforming raw data to a feature space so that inference can be performed in that space has been popular for many years. Recently, rapid progress in deep neural networks has given both researchers and practitioners enhanced methods that increase the richness of feature representations, be it from images, text or speech. In this work we show how a constructed latent space can be explored in a controlled manner and argue that this complements well founded inference methods. For constructing the latent space a Variational Autoencoder is used. We present a novel controller module that allows for smooth traversal in the latent space and construct an end-to-end trainable framework. We explore the applicability of our method for performing spatial transformations as well as kinematics for predicting future latent vectors of a video sequence.

This work was supported by the Australian Research Council Centre of Excellence for Robotic Vision (project number CE1401000016).

Y. Zuo and G. Avraham are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Utgoff, P.E., Stracuzzi, D.J.: Many-layered learning. Neural Comput. 8, 2497–2529 (2002)

    Article  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  5. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  6. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional models for semantic segmentation. In: Computer Vision and Pattern Recognition (2015)

    Google Scholar 

  7. Lotter, W., Kreiman, G., Cox, D.: Deep predictive coding networks for video prediction and unsupervised learning. arXiv preprint arXiv:1605.08104 (2016)

  8. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440 (2015)

  9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  10. Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion GAN for future-flow embedded video prediction. arXiv preprint (2017)

    Google Scholar 

  11. Yoo, Y., Yun, S., Chang, H.J., Demiris, Y., Choi, J.Y.: Variational autoencoded regression: high dimensional regression of visual data on complex manifold. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3674–3683 (2017)

    Google Scholar 

  12. Kulkarni, T.D., Whitney, W.F., Kohli, P., Tenenbaum, J.: Deep convolutional inverse graphics network. In: Advances in Neural Information Processing Systems, pp. 2539–2547 (2015)

    Google Scholar 

  13. Santana, E., Hotz, G.: Learning a driving simulator. arXiv preprint arXiv:1608.01230 (2016)

  14. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  15. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, 2172–2180 (2016)

    Google Scholar 

  16. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. arXiv preprint arXiv:1512.09300 (2015)

  17. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 161–168. ACM (2006)

    Google Scholar 

  18. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20, 832–844 (1998)

    Article  Google Scholar 

  19. Breiman, L.: Bagging predictors. Mach. Learn. 24, 123–140 (1996)

    MATH  Google Scholar 

  20. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  21. Geurts, P., Ernst, D., Wehenkel, L.: Extremely randomized trees. Mach. Learn. 63, 3–42 (2006)

    Article  Google Scholar 

  22. Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32, 448–461 (2010)

    Article  Google Scholar 

  23. Kursa, M.B.: rFerns: an implementation of the random ferns method for general-purpose machine learning. arXiv preprint arXiv:1202.1121 (2012)

  24. Bulo, S.R., Kontschieder, P.: Neural decision forests for semantic image labelling. In: CVPR, vol. 5, pp. 81–88 (2014)

    Google Scholar 

  25. Kontschieder, P., Fiterau, M., Criminisi, A., Bulo, S.R.: Deep neural decision forests. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1467–1475. IEEE (2015)

    Google Scholar 

  26. Zuo, Y., Drummond, T.: Fast residual forests: rapid ensemble learning for semantic segmentation. In: Conference on Robot Learning, pp. 27–36 (2017)

    Google Scholar 

  27. Zuo, Y., Avraham, G., Drummond, T.: Generative adversarial forests for better conditioned adversarial learning. arXiv preprint arXiv:1805.05185 (2018)

  28. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798–1828 (2013)

    Article  Google Scholar 

  29. Rosca, M., Lakshminarayanan, B., Warde-Farley, D., Mohamed, S.: Variational approaches for auto-encoding generative adversarial networks. arXiv preprint arXiv:1706.04987 (2017)

  30. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings CVPR 1991, pp. 586–591. IEEE (1991)

    Google Scholar 

  31. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  32. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv preprint arXiv:1701.07875 (2017)

  33. Dumoulin, V., et al.: Adversarially learned inference. arXiv preprint arXiv:1606.00704 (2016)

  34. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. arXiv preprint arXiv:1605.09782 (2016)

  35. Mescheder, L., Nowozin, S., Geiger, A.: Adversarial variational bayes: unifying variational autoencoders and generative adversarial networks. arXiv preprint arXiv:1701.04722 (2017)

  36. Kingma, D.P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., Welling, M.: Improved variational inference with inverse autoregressive flow. In: Advances in Neural Information Processing Systems, pp. 4743–4751 (2016)

    Google Scholar 

  37. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  38. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

  39. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the kitti dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)

    Article  Google Scholar 

  40. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Zuo , Gil Avraham or Tom Drummond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zuo, Y., Avraham, G., Drummond, T. (2019). Traversing Latent Space Using Decision Ferns. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20887-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20886-8

  • Online ISBN: 978-3-030-20887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics