Skip to main content

GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11361))

Included in the following conference series:

Abstract

This paper presents a novel deep learning framework for human trajectory prediction and detecting social group membership in crowds. We introduce a generative adversarial pipeline which preserves the spatio-temporal structure of the pedestrian’s neighbourhood, enabling us to extract relevant attributes describing their social identity. We formulate the group detection task as an unsupervised learning problem, obviating the need for supervised learning of group memberships via hand labeled databases, allowing us to directly employ the proposed framework in different surveillance settings. We evaluate the proposed trajectory prediction and group detection frameworks on multiple public benchmarks, and for both tasks the proposed method demonstrates its capability to better anticipate human sociological behaviour compared to the existing state-of-the-art methods (This research was supported by the Australian Research Council’s Linkage Project LP140100282 “Improving Productivity and Efficiency of Australian Airports”).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See the supplementary material for the results for using supervised learning to separate the groups on proposed context features.

  2. 2.

    See the supplementary material for an ablation study for the trajectory prediction.

  3. 3.

    https://github.com/francescosolera/group-detection.

References

  1. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  2. Aubakirova, M., Bansal, M.: Interpreting neural networks to improve politeness comprehension. arXiv preprint arXiv:1610.02683 (2016)

  3. Bandini, S., Gorrini, A., Vizzari, G.: Towards an integrated approach to crowd analysis and crowd synthesis: a case study and first results. Pattern Recognit. Lett. 44, 16–29 (2014)

    Article  Google Scholar 

  4. Chollet, F., et al.: Keras (2015) (2017)

    Google Scholar 

  5. Cristani, M., et al.: Social interaction discovery by statistical analysis of f-formations. In: BMVC, vol. 2, p. 4 (2011)

    Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Kdd, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  7. Fernando, T., Denman, S., McFadyen, A., Sridharan, S., Fookes, C.: Tree memory networks for modelling long-term temporal dependencies. Neurocomputing 304, 64–81 (2018)

    Article  Google Scholar 

  8. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft+ hardwired attention: an LSTM framework for human trajectory prediction and abnormal event detection. arXiv preprint arXiv:1702.05552 (2017)

  9. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Learning temporal strategic relationships using generative adversarial imitation learning. arXiv preprint arXiv:1805.04969 (2018)

  10. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Task specific visual saliency prediction with memory augmented conditional generative adversarial networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1539–1548. IEEE (2018)

    Google Scholar 

  11. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Tracking by prediction: a deep generative model for mutli-person localisation and tracking. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1122–1132. IEEE (2018)

    Google Scholar 

  12. Figueroa, J.A., Rivera, A.R.: Learning to cluster with auxiliary tasks: a semi-supervised approach. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 141–148. IEEE (2017)

    Google Scholar 

  13. Ge, W., Collins, R.T., Ruback, R.B.: Vision-based analysis of small groups in pedestrian crowds. IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 1003–1016 (2012). https://doi.org/10.1109/TPAMI.2011.176

    Article  Google Scholar 

  14. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  15. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR). No. CONF (2018)

    Google Scholar 

  16. Hall, E.T.: The hidden dimension (1966)

    Google Scholar 

  17. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  18. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  19. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)

    Google Scholar 

  20. Kendon, A.: Conducting interaction: patterns of behavior in focused encounters, vol. 7. CUP Archive (1990)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  22. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum, vol. 26, pp. 655–664. Wiley Online Library (2007)

    Google Scholar 

  23. Li, Y., Song, J., Ermon, S.: InfoGAIL: interpretable imitation learning from visual demonstrations. In: Advances in Neural Information Processing Systems, pp. 3815–3825 (2017)

    Google Scholar 

  24. Maaten, L.v.d., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  25. Pan, J., et al.: SalGAN: visual saliency prediction with generative adversarial networks. arXiv preprint arXiv:1701.01081 (2017)

  26. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)

    Google Scholar 

  27. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_33

    Chapter  Google Scholar 

  28. Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Savarese, S.: SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints. arXiv preprint arXiv:1806.01482 (2018)

  29. Setti, F., Lanz, O., Ferrario, R., Murino, V., Cristani, M.: Multi-scale f-formation discovery for group detection. In: 2013 20th IEEE International Conference on Image Processing (ICIP), pp. 3547–3551. IEEE (2013)

    Google Scholar 

  30. Shao, J., Loy, C.C., Wang, X.: Scene-independent group profiling in crowd. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2227–2234, June 2014. https://doi.org/10.1109/CVPR.2014.285

  31. Solera, F., Calderara, S., Cucchiara, R.: Structured learning for detection of social groups in crowd. In: 2013 10th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 7–12. IEEE (2013)

    Google Scholar 

  32. Solera, F., Calderara, S., Cucchiara, R.: Socially constrained structural learning for groups detection in crowd. IEEE Trans. Pattern Anal. Mach. Intell. 38(5), 995–1008 (2016)

    Article  Google Scholar 

  33. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  34. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1345–1352. IEEE (2011)

    Google Scholar 

  35. Zanotto, M., Bazzani, L., Cristani, M., Murino, V.: Online Bayesian nonparametrics for group detection. In: Proceedings of BMVC (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tharindu Fernando .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 137 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernando, T., Denman, S., Sridharan, S., Fookes, C. (2019). GD-GAN: Generative Adversarial Networks for Trajectory Prediction and Group Detection in Crowds. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11361. Springer, Cham. https://doi.org/10.1007/978-3-030-20887-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20887-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20886-8

  • Online ISBN: 978-3-030-20887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics