Skip to main content

Third Law and Thermochemistry

  • Chapter
  • First Online:
Book cover Thermodynamics in Earth and Planetary Sciences
  • 1371 Accesses

Abstract

This chapter deals with the third law of thermodynamics and its application to the calculation of absolute entropy at a given temperature, residual entropy at absolute zero, P-T dependence of heat capacity functions, effect of electronic and magnetic transitions on the heat capacity and entropy of solids, unattainability of absolute zero and thermochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaogi M, Takayama H, Kojitani H, Kawaji H, Atake T (2007) Low-temperature heat capacities, entropies and enthalpies of Mg2SiO4 polymorphs, and α-β-γ and post-spinel phase relations at high pressure. Phys Chem Miner 34:169–183

    Article  Google Scholar 

  • Anderson OL (2000) The Grüneisen ratio for the last 30 years. Geophys J Int 143:279–294

    Article  Google Scholar 

  • Berman RG (1988) Internally consistent thermodynamic data for minerals in the system N2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–552

    Article  Google Scholar 

  • Berman RG, Brown TH (1985) Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Presentation, estimation and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Article  Google Scholar 

  • Born M, von Kármán T (1912) Über Schwingungen in Raumgittern. Physik Zeit 12:297–309

    Google Scholar 

  • Brosh E, Shneck RZ, Makov G (2008) Ecplicit Gibbs free energy equation of state for solids. J Phys Chem Solids 69:1912–1922

    Google Scholar 

  • Charlu TV, Newton RC, Kleppa OJ (1975) Enthalpies of formation at 970 K of compounds in the system MgO-Al2O3-SiO2 from high temperature solution calorimetry. Geochim Cosmochim Acta 39:1487–1497

    Article  Google Scholar 

  • Chatterjee ND, Krueger R, Haller G, Olbricht W (1998) The Bayesian approach to the internally consistent thermodynamic data base: theory, database and generation of phase diagrams. Contrib Miner Petrol 133:149–168

    Article  Google Scholar 

  • Clayton JO, Giauque WF (1932) The heat capacity and entropy of carbon monoxide. Heat of vaporization. Vapor pressure of solid and liquid. Free energy to 500 K from spectroscopic data. J Am Chem Soc 54:2610–2626

    Article  Google Scholar 

  • Dachs E, Geiger C, von Seckendorff V, Grodzicli M (2007) A low temperature calorimetric study of synthetic (forsterite + fayalite) {(Mg2SiO4 + Fe2SiO4)} solid solutions: an analysis of vibrational, magnetic, and electronic contributions to the molar heat capacity and entropy of mixing. J Chem Thermo 39:906–933

    Google Scholar 

  • Debye P (1912) Zur Theorie der spezifischen wärmen. Ann der Physik 39:789–839

    Article  Google Scholar 

  • Denbigh K (1981) The principles of chemical equilibrium, 4th Edition, Dover

    Google Scholar 

  • Fabrichnaya O, Saxena SK, Richet P, Westrum EF (2004) Thermodynamic data, models, and phase diagrams in multicomponent oxide systems. Springer

    Google Scholar 

  • Fei Y, Saxena SK (1987) An equation of state for the heat capacity of solids. Geochim Cosmochim Acta 51:251–254

    Article  Google Scholar 

  • Fermi E (1956) Thermodynamics, Dover p 160

    Google Scholar 

  • Ganguly J, Saxena SK (1987) Mixtures and mineral reactions. Springer, Berlin, Heidelberg, New York, Paris Tokyo, p 291

    Book  Google Scholar 

  • Geiger CA (2001) Thermodynamic mixing properties of binary oxide and silicate solid solutions determined by direct measurements: the role of strain. In: Geiger CA (ed) Solid solutions in silicate and oxide systems. EMU notes mineral 3, Eőtvős Univ Press, pp 71–100

    Google Scholar 

  • Ghose S, Choudhury N, Chaplot SL, Rao KR (1992) Phonon density of states and thermodynamic properties of minerals. In: Saxena SK (ed) Advances in physical geochemistry, vol 9. Springer, New York Berlin Heidelberg, pp 283–314

    Google Scholar 

  • Gillet P, Richet P, Guyot F (1991) High temperature thermodynamic properties of forsterite. J Geophys Res 96:11805–11816

    Article  Google Scholar 

  • Gottschalk M (1997) Internally consistent thermodynamic data for rock-forming minerals in the system SiO2-TiO2-Al2O3-Fe2O3-CaO-MgO-FeO-K2O-Na2O-H2O-CO2. Eur J Miner 9:175–223

    Article  Google Scholar 

  • Gramaccioli CM (ed) (2002) Energy modelling in minerals. EMU notes in mineralogy, vol 4, Eötvös University Press, Budapest, p 425

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer J Sci 278-A:1–229

    Google Scholar 

  • Holland TJB, Powell R (2011) An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J Met Geol 29:333–383

    Google Scholar 

  • Jacobs MHG, Schmid-Fetzer R, van der Berg AP (2013) An alternative use of Kieffer’s lattice dynamic model using vibrational density of states for constructing thermodynamic databases. Phys Chem Miner 40:207–227

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1992) SUPCRIT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 50000 bar and 0 to 1000 C. Comput Geosci 18:889–947

    Article  Google Scholar 

  • Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals: 1. Mineral heat capacities and their relationships to simple lattice vibrational models. Rev Geophys Space Phys 17:1–19

    Article  Google Scholar 

  • Kieffer SW, Navrotsky A (1985) Editors: Microscopic to macroscopic, Reviews in mineralogy 14, Mineralogical Society of America, p 428

    Google Scholar 

  • Kittel C (2005) Introduction to solid state physics. Wiley, New Jersey, p 704

    Google Scholar 

  • Kittel C, Kroemer H (1980) Thermal physics. Freeman, San Francisco, p 473

    Google Scholar 

  • Kleppa OJ (1976) Mineralogical applications of high temperature reaction calorimetry. In: Sterns RGJ (ed) The Physics and chemistry of minerals. Wiley, pp 369–388

    Google Scholar 

  • Maier CG, Kelley KK (1932) An equation for the representation of high temperature heat content data. J Am Chem Soc 54:3242–3246

    Article  Google Scholar 

  • Mammone JF, Sharma SK (1979) Pressure and temperature dependence of Raman spectra of rutile structure oxides. Year Book Carnegie Inst Washington 78:369–373

    Google Scholar 

  • Navrotsky A (1997) Progress and new directions in high temperature calorimetry. Phys Chem Miner 24:222–241

    Article  Google Scholar 

  • Navrotsky A (2002) Thermochemistry, energetic modelling, and systematics. In: Gramaciolli CM (ed) Energy modelling in minerals, vol 14. European Mineralogical Union. Eötvös University Press, Budapest, Hungary, pp 5–26

    Google Scholar 

  • O’Neill HStC (1988) Systems Fe-O and Cu-O: Thermodynamic data for the equilibria Fe-“FeO”, Fe-Fe3O4, “FeO”-Fe3O4, Fe3O4-Fe2O3, Cu-Cu2O, and Cu2O-CuO from emf measurements. Am Miner 73:470–486

    Google Scholar 

  • Ottonello G (2018) Ab initio reactivity of Earth’s materials. Rivista del Nuovo Cimento 41:225–289

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geol Surv Bull 1452, p 456

    Google Scholar 

  • Saxena SK, Chatterjee N, Fei Y, Shen G (1993) Thermodynamic data on oxides and silicates. Springer

    Google Scholar 

  • Stacey FD (2005) High pressure equations of state and planetary interiors. Rep Prog Phys 68:341–383

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2005a) Thermodynamics of mantle minerals–I. Physical properties. Geophys J Int 162:610–632

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2005b) Thermodynamics of mantle minerals–II. Phase equilibria. Geophys J Int 184:1180–1213

    Article  Google Scholar 

  • Stixrude L, Lithgow-Bertelloni C (2011) Thermodynamics of mantle minerals–II. Phase equilibria Geophys J Int 184:1180–1213

    Google Scholar 

  • Swalin RA (1962) Thermodynamics of solids. Wiley, New York, London, Sydney, Toronto, p 387

    Google Scholar 

  • Tirone M (2015) On the use of thermal equations of state and the extrapolation at high temperature and pressure for geophysical and petrological applications. Geophys J Int 202:55–66

    Article  Google Scholar 

  • Tossell JA, Vaughn DJ (1992) Theoretical geochemistry: application of quantum mechanics in the earth and mineral sciences. Oxford, Oxford, New York, p 514

    Book  Google Scholar 

  • Ulbrich HH, Waldbaum DR (1976) Structural and other contributions to the third-law entropies of silicates. Geochim Cosmochim Acta 40:1–24

    Article  Google Scholar 

  • Zemansky MW, Dittman RH (1981) Heat and thermodynamics. McGraw-Hill, New York, p 543

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jibamitra Ganguly .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ganguly, J. (2020). Third Law and Thermochemistry. In: Thermodynamics in Earth and Planetary Sciences. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-030-20879-0_4

Download citation

Publish with us

Policies and ethics