Advertisement

Partial Person Re-identification with Alignment and Hallucination

  • Sara IodiceEmail author
  • Krystian Mikolajczyk
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11366)

Abstract

Partial person re-identification involves matching pedestrian views where only a part of a body is visible in corresponding images. This reflects practical CCTV surveillance scenario, where full person views are often unavailable. Missing body parts make the comparison very challenging due to significant misalignment and varying scale of the views. We propose Partial Matching Net (PMN) that detects body joints, aligns partial views and hallucinates the missing parts based on the information present in the frame and a learned model of a person. The aligned and reconstructed views are then combined into a joint representation and used for matching images. We evaluate our approach and compare to other methods on three different datasets, demonstrating significant improvements.

Keywords

Partial person re-identification Hallucination Alignment 

Notes

Acknowledgment

This research was supported by UK EPSRC EP/N007743/1 grant.

References

  1. 1.
    Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network for person re-identification. In: CVPR (2014)Google Scholar
  2. 2.
    Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: ICCV (2015)Google Scholar
  3. 3.
    Gray, D., Tao, H.: Viewpoint invariant pedestrian recognition with an ensemble of localized features. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 262–275. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-88682-2_21CrossRefGoogle Scholar
  4. 4.
    Zheng, W.S., Li, X., Xiang, T., Liao, S., Lai, J., Gong, S.: Partial person re-identification. In: ICCV (2015)Google Scholar
  5. 5.
    Xu, X., Liu, W., Li, L.: Face hallucination: how much it can improve face recognition. In: AUCC (2013)Google Scholar
  6. 6.
    He, L., Liang, J., Li, H., Sun, Z.: Deep spatial feature reconstruction for partial person re-identification: alignment-free approach. In: CVPR (2018)Google Scholar
  7. 7.
    Huang, H., Li, D., Zhang, Z., Chen, X., Huang, K.: Adversarially occluded samples for person re-identification. In: CVPR (2018)Google Scholar
  8. 8.
    Huang, B., Chen, J., Wang, Y., Liang, C., Wang, Z., Sun, K.: Sparsity-based occlusion handling method for person re-identification. In: He, X., Luo, S., Tao, D., Xu, C., Yang, J., Hasan, M.A. (eds.) MMM 2015. LNCS, vol. 8936, pp. 61–73. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14442-9_6CrossRefGoogle Scholar
  9. 9.
    Wang, S., Lewandowski, M., Annesley, J., Orwell, J.: Re-identification of pedestrians with variable occlusion and scale. In: ICCV Workshops (2011)Google Scholar
  10. 10.
    Lee, S., Hong, Y., Jeon, M.: Occlusion detector using convolutional neural network for person re-identification. In: ICCAIS (2017)Google Scholar
  11. 11.
    Ahmed, E., Jones, M., Marks, T.K.: An improved deep learning architecture for person re-identification. In: CVPR (2015)Google Scholar
  12. 12.
    Varior, R.R., Haloi, M., Wang, G.: Gated Siamese convolutional neural network architecture for human re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 791–808. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46484-8_48CrossRefGoogle Scholar
  13. 13.
    Wu, L., Wang, Y., Li, X., Gao, J.: What-and-where to match: deep spatially multiplicative integration networks for person re-identification. Pattern Recogn. 76, 727–738 (2018)CrossRefGoogle Scholar
  14. 14.
    Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-01225-0_30CrossRefGoogle Scholar
  15. 15.
    Li, W., Zhu, X., Gong, S.: Harmonious attention network for person re-identification. In: CVPR (2018)Google Scholar
  16. 16.
    Zhao, L., Li, X., Zhuang, Y., Wang, J.: Deeply-learned part-aligned representations for person re-identification. In: ICCV (2017)Google Scholar
  17. 17.
    Guo, Y., Cheung, N.: Efficient and deep person re-identification using multi-level similarity. In: CVPR (2018)Google Scholar
  18. 18.
    Wei, L., Zhang, S., Yao, H., Gao, W., Tian, Q.: GLAD: global-local-alignment descriptor for pedestrian retrieval. In: ACM on Multimedia Conference (2017)Google Scholar
  19. 19.
    Su, C., Li, J., Zhang, S., Xing, J., Gao, W., Tian, Q.: Pose-driven deep convolutional model for person re-identification. In: ICCV (2017)Google Scholar
  20. 20.
    Zhao, H., et al.: Spindle net: person re-identification with human body region guided feature decomposition and fusion. In: CVPR (2017)Google Scholar
  21. 21.
    Xu, J., Zhao, R., Zhu, F., Wang, H., Ouyang, W.: Attention-aware compositional network for person re-identification. In: CVPR (2018)Google Scholar
  22. 22.
    Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)Google Scholar
  23. 23.
    Zheng, Z., Zheng, L., Yang, Y: Unlabeled samples generated by GAN improve the person re-identification baseline in vitro. In: ICCV (2017)Google Scholar
  24. 24.
    Liu, J., Ni, B., Yan, Y., Zhou, P., Cheng, S., Hu, J.: Pose transferrable person re-identification. In: CVPR (2018)Google Scholar
  25. 25.
    Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: CVPR (2018)Google Scholar
  26. 26.
    Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR (2018)Google Scholar
  27. 27.
    Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: CVPR (2018)Google Scholar
  28. 28.
    Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: CVPR (2016)Google Scholar
  29. 29.
    Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)Google Scholar
  30. 30.
    Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)Google Scholar
  31. 31.
    Zhong, Z., Zheng, L., Cao, D., Li, S.: Re-ranking person re-identification with k-reciprocal encoding. In: CVPR (2017)Google Scholar
  32. 32.
    Xiao, T., Li, H., Ouyang, W., Wang, X.: Learning deep feature representations with domain guided dropout for person re-identification. In: CVPR (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Imperial College LondonLondonUK

Personalised recommendations