Advertisement

Common Self-polar Triangle of Concentric Conics for Light Field Camera Calibration

  • Qi Zhang
  • Qing WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11366)

Abstract

Accurate light field camera calibration plays an important role in various applications. Instead of a planar checkerboard, we propose to calibrate light field camera using a concentric conics pattern. In this paper, we explore the property and reconstruction of common self-polar triangle with respect to concentric circle and ellipse. A light field projection model is formulated to compute out an effective linear initial solution for both intrinsic and extrinsic parameters. In addition, a 4-parameter radial distortion model is presented considering different view points in light field. Finally, we establish a cost function based on Sampson error for non-linear optimization. Experimental results on both synthetic data and real light field have verified the effectiveness and robustness of the proposed algorithm.

Keywords

Computational photography and video Light field camera calibration Common self-polar triangle 

References

  1. 1.
    Birklbauer, C., Bimber, O.: Panorama light-field imaging. In: Computer Graphics Forum, vol. 33, pp. 43–52. Wiley Online Library (2014)Google Scholar
  2. 2.
    Bok, Y., Jeon, H.-G., Kweon, I.S.: Geometric calibration of micro-lens-based light-field cameras using line features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 47–61. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10599-4_4CrossRefGoogle Scholar
  3. 3.
    Bok, Y., Jeon, H.G., Kweon, I.S.: Geometric calibration of micro-lens-based light field cameras using line features. IEEE T-PAMI 39(2), 287–300 (2017)CrossRefGoogle Scholar
  4. 4.
    Canny, J.: A computational approach to edge detection. In: Readings in Computer Vision, pp. 184–203. Elsevier (1987)Google Scholar
  5. 5.
    Dansereau, D.G., Mahon, I., Pizarro, O., Williams, S.B.: Plenoptic flow: closed-form visual odometry for light field cameras. In: IEEE IROS, pp. 4455–4462 (2011)Google Scholar
  6. 6.
    Dansereau, D.G., Pizarro, O., Williams, S.B.: Decoding, calibration and rectification for lenselet-based plenoptic cameras. In: IEEE CVPR, pp. 1027–1034 (2013)Google Scholar
  7. 7.
    Dong, F., Ieng, S.H., Savatier, X., Etienne-Cummings, R., Benosman, R.: Plenoptic cameras in real-time robotics. IJRR 32(2), 206–217 (2013)Google Scholar
  8. 8.
    Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)Google Scholar
  9. 9.
    Guo, X., Yu, Z., Kang, S.B., Lin, H., Yu, J.: Enhancing light fields through ray-space stitching. IEEE T-VCG 22(7), 1852–1861 (2016)Google Scholar
  10. 10.
    Hartley, R.: Self-calibration of stationary cameras. IJCV 22(1), 5–23 (1997)CrossRefGoogle Scholar
  11. 11.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  12. 12.
    Huang, H., Zhang, H., Cheung, Y.M.: The common self-polar triangle of concentric circles and its application to camera calibration. In: IEEE CVPR, pp. 4065–4072 (2015)Google Scholar
  13. 13.
    Huang, H., Zhang, H., Cheung, Y.M.: Homography estimation from the common self-polar triangle of separate ellipses. In: IEEE CVPR, pp. 1737–1744 (2016)Google Scholar
  14. 14.
    Jeon, H.G., et al.: Accurate depth map estimation from a lenslet light field camera. In: IEEE CVPR, pp. 1547–1555 (2015)Google Scholar
  15. 15.
    Johannsen, O., Heinze, C., Goldluecke, B., Perwaß, C.: On the calibration of focused plenoptic cameras. In: Grzegorzek, M., Theobalt, C., Koch, R., Kolb, A. (eds.) Time-of-Flight and Depth Imaging. Sensors, Algorithms, and Applications. LNCS, vol. 8200, pp. 302–317. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-44964-2_15CrossRefGoogle Scholar
  16. 16.
    Johannsen, O., Sulc, A., Goldluecke, B.: On linear structure from motion for light field cameras. In: IEEE ICCV, pp. 720–728 (2015)Google Scholar
  17. 17.
    Kim, J.S., Gurdjos, P., Kweon, I.S.: Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. IEEE T-PAMI 27(4), 637–642 (2005)CrossRefGoogle Scholar
  18. 18.
    Levoy, M., Hanrahan, P.: Light field rendering. In: ACM SIGGRAPH, pp. 31–42 (1996)Google Scholar
  19. 19.
    Liebowitz, D.: Camera calibration and reconstruction of geometry from images. Ph.D. thesis, University of Oxford (2001)Google Scholar
  20. 20.
    Lytro: Lytro redefines photography with light field cameras (2011). http://www.lytro.com
  21. 21.
    Madsen, K., Nielsen, H.B., Tingleff, O.: Methods for Non-linear Least Squares Problems, 2nd edn. Informatics and Mathematical Modelling, Technical University of Denmark, Kongens Lyngby (2004)Google Scholar
  22. 22.
    Ng, R.: Fourier slice photography. ACM TOG 24(3), 735–744 (2005)CrossRefGoogle Scholar
  23. 23.
    Ng, R.: Digital light field photography. Ph.D. thesis, Stanford University (2006)Google Scholar
  24. 24.
    Quan, L., Gros, P., Mohr, R.: Invariants of a pair of conics revisited. In: Mowforth, P. (ed.) BMVC 1991, pp. 71–77. Springer, London (1991).  https://doi.org/10.1007/978-1-4471-1921-0_10CrossRefGoogle Scholar
  25. 25.
    Raytrix: 3D light field camera technology (2013). http://www.raytrix.de
  26. 26.
    Ren, Z., Zhang, Q., Zhu, H., Wang, Q.: Extending the FOV from disparity and color consistencies in multiview light fields. In: Processing ICIP, pp. 1157–1161 (2017)Google Scholar
  27. 27.
    Si, L., Wang, Q.: Dense depth-map estimation and geometry inference from light fields via global optimization. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 83–98. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-54187-7_6CrossRefGoogle Scholar
  28. 28.
    Springer, C.E.: Geometry and Analysis of Projective Spaces, vol. 68. Freeman, New York (1964)zbMATHGoogle Scholar
  29. 29.
    Thomason, C., Thurow, B., Fahringer, T.: Calibration of a microlens array for a plenoptic camera. In: AIAA, pp. 1456–1460 (2014)Google Scholar
  30. 30.
    Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane + parallax for calibrating dense camera arrays. In: IEEE CVPR, pp. 2–9 (2004)Google Scholar
  31. 31.
    Wang, T.C., Efros, A.A., Ramamoorthi, R.: Depth estimation with occlusion modeling using light-field cameras. IEEE T-PAMI 38(11), 2170–2181 (2016)CrossRefGoogle Scholar
  32. 32.
    Wanner, S., Goldluecke, B.: Globally consistent depth labeling of 4D light fields. In: IEEE CVPR, pp. 41–48 (2012)Google Scholar
  33. 33.
    Xiao, Z., Wang, Q., Zhou, G., Yu, J.: Aliasing detection and reduction scheme on angularly undersampled light fields. IEEE TIP 26(5), 2103–2115 (2017)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Zhang, C., Ji, Z., Wang, Q.: Rectifying projective distortion in 4D light field. In: IEEE ICIP (2016)Google Scholar
  35. 35.
    Zhang, Q., Zhang, C., Ling, J., Wang, Q., Yu, J.: A generic multi-projection-center model and calibration method for light field cameras. IEEE T-PAMI (2018).  https://doi.org/10.1109/TPAMI.2018.2864617
  36. 36.
    Zhang, Y., Li, Z., Yang, W., Yu, P., Lin, H., Yu, J.: The light field 3D scanner. In: IEEE ICCP, pp. 1–9 (2017)Google Scholar
  37. 37.
    Zhang, Y., Yu, P., Yang, W., Ma, Y., Yu, J.: Ray space features for plenoptic structure-from-motion. In: IEEE ICCV, pp. 4631–4639 (2017)Google Scholar
  38. 38.
    Zhu, H., Wang, Q., Yu, J.: Occlusion-model guided anti-occlusion depth estimation in light field. IEEE J-STSP 11(7), 965–978 (2017)Google Scholar
  39. 39.
    Zhu, H., Zhang, Q., Wang, Q.: 4D light field superpixel and segmentation. In: IEEE CVPR, pp. 6709–6717 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Computer ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations