Skip to main content

Unseen Object Segmentation in Videos via Transferable Representations

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

  • 1819 Accesses

Abstract

In order to learn object segmentation models in videos, conventional methods require a large amount of pixel-wise ground truth annotations. However, collecting such supervised data is time-consuming and labor-intensive. In this paper, we exploit existing annotations in source images and transfer such visual information to segment videos with unseen object categories. Without using any annotations in the target video, we propose a method to jointly mine useful segments and learn feature representations that better adapt to the target frames. The entire process is decomposed into two tasks: (1) solving a submodular function for selecting object-like segments, and (2) learning a CNN model with a transferable module for adapting seen categories in the source domain to the unseen target video. We present an iterative update scheme between two tasks to self-learn the final solution for object segmentation. Experimental results on numerous benchmark datasets show that the proposed method performs favorably against the state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caelles, S., Maninis, K.K., Pont-Tuset, J., Leal-Taixé, L., Cremers, D., Gool, L.V.: One-shot video object segmentation. In: CVPR (2017)

    Google Scholar 

  2. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. arXiv:1606.00915 (2016)

  3. Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: Segflow: joint learning for video object segmentation and optical flow. In: ICCV (2017)

    Google Scholar 

  4. Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The Pascal visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  5. Faktor, A., Irani, M.: Video segmentation by non-local consensus voting. In: BMVC (2014)

    Google Scholar 

  6. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  7. Gopalan, R., Li, R., Chellappa, R.: Domain adaptation for object recognition: an unsupervised approach. In: ICCV (2011)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  9. Hoffman, J., et al.: LSDA: large scale detection through adaptation. In: NIPS (2014)

    Google Scholar 

  10. Hong, S., Oh, J., Lee, H., Han, B.: Learning transferrable knowledge for semantic segmentation with deep convolutional neural network. In: CVPR (2016)

    Google Scholar 

  11. Hu, R., Dollár, P., He, K., Darrell, T., Girshick, R.: Learning to segment every thing. arXiv:1711.10370 (2017)

  12. Jain, S., Xiong, B., Grauman, K.: FusionSeg: learning to combine motion and appearance for fully automatic segmentation of generic objects in videos. In: CVPR (2017)

    Google Scholar 

  13. Jain, S.D., Grauman, K.: Supervoxel-consistent foreground propagation in video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 656–671. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_43

    Chapter  Google Scholar 

  14. Khoreva, A., Perazzi, F., Benenson, R., Schiele, B., Sorkine-Hornung, A.: Learning video object segmentation from static images. In: CVPR (2017)

    Google Scholar 

  15. Koh, Y.J., Kim, C.S.: Primary object segmentation in videos based on region augmentation and reduction. In: CVPR (2017)

    Google Scholar 

  16. Lazic, N., Givoni, I., Frey, B., Aarabi, P.: Floss: facility location for subspace segmentation. In: ICCV (2009)

    Google Scholar 

  17. Lee, Y.J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: ICCV (2011)

    Google Scholar 

  18. Lim, J.J., Salakhutdinov, R., Torralba, A.: Transfer learning by borrowing examples for multiclass object detection. In: NIPS (2011)

    Google Scholar 

  19. Liu, C.: Beyond pixels: exploring new representations and applications for motion analysis. Ph.D. thesis, MIT (2009)

    Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  21. Märki, N., Perazzi, F., Wang, O., Sorkine-Hornung, A.: Bilateral space video segmentation. In: CVPR (2016)

    Google Scholar 

  22. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: ICCV (2013)

    Google Scholar 

  23. Patricia, N., Caputo, B.: Learning to learn, from transfer learning to domain adaptation: a unifying perspective. In: CVPR (2014)

    Google Scholar 

  24. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word representation. In: EMNLP, pp. 1532–1543 (2014)

    Google Scholar 

  25. Perazzi, F., Pont-Tuset, J., McWilliams, B., Gool, L.V., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: CVPR (2016)

    Google Scholar 

  26. Perazzi, F., Wang, O., Gross, M., Sorkine-Hornung, A.: Fully connected object proposals for video segmentation. In: CVPR (2015)

    Google Scholar 

  27. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: ICCV (2011)

    Google Scholar 

  28. Prest, A., Leistner, C., Civera, J., Schmid, C., Ferrari, V.: Learning object class detectors from weakly annotated video. In: CVPR (2012)

    Google Scholar 

  29. Rochan, M., Wang, Y.: Weakly supervised localization of novel objects using appearance transfer. In: CVPR (2015)

    Google Scholar 

  30. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 213–226. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_16

    Chapter  Google Scholar 

  31. Saleh, F.S., Aliakbarian, M.S., Salzmann, M., Petersson, L., Alvarez, J.M.: Bringing background into the foreground: making all classes equal in weakly-supervised video semantic segmentation. In: ICCV (2017)

    Google Scholar 

  32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556, 1187–1200 (2014)

    Google Scholar 

  33. Strand, R., Ciesielski, K.C., Malmberg, F., Saha, P.K.: The minimum barrier distance. CVIU 117(4), 429–437 (2013)

    MATH  Google Scholar 

  34. Tang, K., Sukthankar, R., Yagnik, J., Fei-Fei, L.: Discriminative segment annotation in weakly labeled video. In: CVPR (2013)

    Google Scholar 

  35. Taylor, B., Karasev, V., Soatto, S.: Causal video object segmentation from persistence of occlusions. In: CVPR (2015)

    Google Scholar 

  36. Tokmakov, P., Alahari, K., Schmid, C.: Learning motion patterns in videos. In: CVPR (2017)

    Google Scholar 

  37. Tokmakov, P., Alahari, K., Schmid, C.: Learning video object segmentation with visual memory. In: ICCV (2017)

    Google Scholar 

  38. Tommasi, T., Orabona, F., Caputo, B.: Learning categories from few examples with multi model knowledge transfer. PAMI 36, 928–941 (2014)

    Article  Google Scholar 

  39. Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: CVPR (2016)

    Google Scholar 

  40. Tsai, Y.-H., Zhong, G., Yang, M.-H.: Semantic co-segmentation in videos. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 760–775. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_46

    Chapter  Google Scholar 

  41. Yan, Y., Xu, C., Cai, D., Corso, J.J.: Weakly supervised actor-action segmentation via robust multi-task ranking. In: CVPR (2017)

    Google Scholar 

  42. Zhang, D., Yang, L., Meng, D., Xu, D., Han, J.: SPFTN: a self-paced fine-tuning network for segmenting objects in weakly labelled videos. In: CVPR (2017)

    Google Scholar 

  43. Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 fps. In: ICCV (2015)

    Google Scholar 

  44. Zhang, Y., Chen, X., Li, J., Wang, C., Xia, C.: Semantic object segmentation via detection in weakly labeled video. In: CVPR (2015)

    Google Scholar 

  45. Zhong, G., Tsai, Y.-H., Yang, M.-H.: Weakly-supervised video scene co-parsing. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10111, pp. 20–36. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54181-5_2

    Chapter  Google Scholar 

  46. Zhu, F., Jiang, Z., Shao, L.: Submodular object recognition. In: CVPR (2014)

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by Ministry of Science and Technology under grants MOST 105-2221-E-001-030-MY2 and MOST 107-2628-E-001-005-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Wen Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (avi 32903 KB)

Supplementary material 2 (pdf 28017 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, YW., Tsai, YH., Yang, CY., Lin, YY., Yang, MH. (2019). Unseen Object Segmentation in Videos via Transferable Representations. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics