Skip to main content

Pooling-Based Feature Extraction and Coarse-to-fine Patch Matching for Optical Flow Estimation

  • 1633 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11364)

Abstract

This paper presents a pooling-based hierarchical model to extract a dense matching set for optical flow estimation. The proposed model down-samples basic image features (gradient and colour) with min and max pooling, to maintain distinctive visual features from the original resolution to the highly down-sampled layers. Subsequently, patch descriptors are extracted from the pooling results for coarse-to-fine patch matching. In the matching process, the local optimum correspondence of patches is found with a four-step search, and then refined by a velocity propagation algorithm. This paper also presents a method to detect matching outliers by checking the consistency of motion-based and colour-based segmentation. We evaluate the proposed method on two benchmarks, MPI-Sintel and Kitti-2015, using two criteria: the matching accuracy and the accuracy of the resulting optical flow estimation. The results indicate that the proposed method is more efficient, produces more matches than the existing algorithms, and improves significantly the accuracy of optical flow estimation.

Keywords

  • Optical flow estimation
  • Coarse-to-fine patch matching
  • Pooling-based feature extraction

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    sintel.is.tue.mpg.de.

  2. 2.

    www.cvlibs.net/datasets/kitti.

  3. 3.

    Dthoth.inrialpes.fr/src/deepflow/.

  4. 4.

    github.com/YinlinHu/CPM.

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2281 (2012)

    CrossRef  Google Scholar 

  2. Bailer, C., Taetz, B., Stricker, D.: Flow fields: dense correspondence fields for highly accurate large displacement optical flow estimation. In: ICCV, pp. 4015–4023 (2015)

    Google Scholar 

  3. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchmatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_3

    CrossRef  Google Scholar 

  4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    CrossRef  Google Scholar 

  5. Brox, T., Malik, J.: Large displacement optical flow: descriptor matching in variational motion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 500–513 (2011)

    CrossRef  Google Scholar 

  6. Brox, T., Malik, J., Bregler, C.: Large displacement optical flow. In: CVPR, pp. 41–48 (2009)

    Google Scholar 

  7. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    CrossRef  Google Scholar 

  8. Chen, Q., Koltun, V.: Full flow: optical flow estimation by global optimization over regular grids. In: CVPR, pp. 4706–4714 (2016)

    Google Scholar 

  9. Dollár, P., Zitnick, C.L.: Structured forests for fast edge detection. In: ICCV, pp. 1841–1848 (2013)

    Google Scholar 

  10. Dong, X., Shen, J., Shao, L.: Hierarchical superpixel-to-pixel dense matching. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2518–2526 (2017)

    CrossRef  Google Scholar 

  11. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)

    Google Scholar 

  12. He, K., Sun, J.: Computing nearest-neighbor fields via propagation-assisted KD-trees. In: CVPR, pp. 111–118 (2012)

    Google Scholar 

  13. Hu, Y., Li, Y., Song, R.: Robust interpolation of correspondences for large displacement optical flow. In: CVPR, vol. 2017-Janua, pp. 4791–4799 (2017)

    Google Scholar 

  14. Hu, Y., Song, R., Li, Y.: Efficient coarse-to-fine patchmatch for large displacement optical flow. In: CVPR, pp. 5704–5712 (2016)

    Google Scholar 

  15. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: Flownet 2.0: evolution of optical flow estimation with deep networks. In: CVPR, pp. 1–8 (2017)

    Google Scholar 

  16. Liu, C., Yuen, J., Member, S., Torralba, A.: SIFT flow: dense correspondence across scenes and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 978–994 (2011)

    CrossRef  Google Scholar 

  17. Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: SIFT flow: dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_3

    CrossRef  Google Scholar 

  18. Lu, J., Li, Y., Yang, H., Min, D., Eng, W., Do, M.N.: PatchMatch filter: edge-aware filtering meets randomized search for visual correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 39(9), 1866–1879 (2017)

    CrossRef  Google Scholar 

  19. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR, pp. 4040–4048 (2015)

    Google Scholar 

  20. Menze, M., Heipke, C., Geiger, A.: Joint 3D estimation of vehicles and scene flow. In: ISPRS Workshops, pp. 427–434 (2015)

    Google Scholar 

  21. Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS J. Photogrammetry Remote Sens. 140, 60–76 (2018)

    CrossRef  Google Scholar 

  22. Ranjan, A., Black, M.J.: Optical flow estimation using a spatial pyramid network. In: CVPR, pp. 1–8 (2017)

    Google Scholar 

  23. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Epicflow: edge-preserving interpolation of correspondences for optical flow. In: CVPR, pp. 1164–1172 (2015)

    Google Scholar 

  24. Revaud, J., Weinzaepfel, P., Harchaoui, Z., Schmid, C.: Deepmatching: hierarchical deformable dense matching. Int. J. Comput. Vis. 120, 300–323 (2016)

    CrossRef  MathSciNet  Google Scholar 

  25. Sevilla-Lara, L., Sun, D., Learned-Miller, E.G., Black, M.J.: Optical flow estimation with channel constancy. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 423–438. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_28

    CrossRef  Google Scholar 

  26. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR, pp. 1–8 (2017)

    Google Scholar 

  27. Unger, M., Werlberger, M., Pock, T., Bischof, H.: Joint motion estimation and segmentation of complex scenes with label costs and occlusion modeling. In: CVPR, pp. 1878–1885 (2012)

    Google Scholar 

  28. Wulff, J., Sevilla-Lara, L., Black, M.J.: Optical flow in mostly rigid scenes. In: CVPR, pp. 6911–6920 (2017)

    Google Scholar 

  29. Xu, J., Ranftl, R., Koltun, V.: Accurate optical flow via direct cost volume processing. In: CVPR, pp. 1289–1297 (2017)

    Google Scholar 

  30. Yang, J., Li, H.: Dense, accurate optical flow estimation with piecewise parametric model. In: CVPR, pp. 1019–1027 (2015)

    Google Scholar 

  31. Yang, Y., Soatto, S.: S2F: slow-to-fast interpolator flow. In: CVPR, pp. 3767–3776 (2017)

    Google Scholar 

  32. Yao, J., Boben, M., Fidler, S., Urtasun, R.: Real-time coarse-to-fine topologically preserving segmentation. In: CVPR, pp. 2947–2955 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, X., Phung, S.L., Bouzerdoum, A., Tang, V.H. (2019). Pooling-Based Feature Extraction and Coarse-to-fine Patch Matching for Optical Flow Estimation. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)