Skip to main content

Dealing with Ambiguity in Robotic Grasping via Multiple Predictions

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

Abstract

Humans excel in grasping and manipulating objects because of their life-long experience and knowledge about the 3D shape and weight distribution of objects. However, the lack of such intuition in robots makes robotic grasping an exceptionally challenging task. There are often several equally viable options of grasping an object. However, this ambiguity is not modeled in conventional systems that estimate a single, optimal grasp position. We propose to tackle this problem by simultaneously estimating multiple grasp poses from a single RGB image of the target object. Further, we reformulate the problem of robotic grasping by replacing conventional grasp rectangles with grasp belief maps, which hold more precise location information than a rectangle and account for the uncertainty inherent to the task. We augment a fully convolutional neural network with a multiple hypothesis prediction model that predicts a set of grasp hypotheses in under 60 ms, which is critical for real-time robotic applications. The grasp detection accuracy reaches over \(90\%\) for unseen objects, outperforming the current state of the art on this task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asif, U., Bennamoun, M., Sohel, F.A.: RGB-D object recognition and grasp detection using hierarchical cascaded forests. IEEE Trans. Rob. 33(3), 547–564 (2017)

    Article  Google Scholar 

  2. Belagiannis, V., Zisserman, A.: Recurrent human pose estimation. In: International Conference on Automatic Face & Gesture Recognition (FG 2017) (2017)

    Google Scholar 

  3. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: Proceedings of 2000 IEEE International Conference on Robotics and Automation (ICRA), vol. 1, pp. 348–353. IEEE (2000)

    Google Scholar 

  4. Bulat, A., Tzimiropoulos, G.: Human pose estimation via convolutional part heatmap regression. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 717–732. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_44

    Chapter  Google Scholar 

  5. Bulat, A., Tzimiropoulos, G.: Super-fan: integrated facial landmark localization and super-resolution of real-world low resolution faces in arbitrary poses with GANs. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  6. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2D pose estimation using part affinity fields. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) (1977)

    Google Scholar 

  8. Du, X., et al.: Articulated multi-instrument 2D pose estimation using fully convolutional networks. IEEE Trans. Med. Imaging (2018)

    Google Scholar 

  9. Guo, D., Sun, F., Liu, H., Kong, T., Fang, B., Xi, N.: A hybrid deep architecture for robotic grasp detection. In: 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2017)

    Google Scholar 

  10. Guzman-Rivera, A., et al.: Multi-output learning for camera relocalization. In: Conference on Computer Vision and Pattern Recognition (2014)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  12. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from RGB-D images: learning using a new rectangle representation. In: International Conference on Robotics and Automation (ICRA). IEEE (2011)

    Google Scholar 

  13. Kehoe, B., Patil, S., Abbeel, P., Goldberg, K.: A survey of research on cloud robotics and automation

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (2012)

    Google Scholar 

  15. Kumra, S., Kanan, C.: Robotic grasp detection using deep convolutional neural networks. arXiv preprint arXiv:1611.08036 (2016)

  16. Laina, I., et al.: Concurrent segmentation and localization for tracking of surgical instruments. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 664–672. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_75

    Chapter  Google Scholar 

  17. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE (2016)

    Google Scholar 

  18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. In: Proceedings of the IEEE (1998)

    Google Scholar 

  19. Lee, S., Prakash, S.P.S., Cogswell, M., Ranjan, V., Crandall, D., Batra, D.: Stochastic multiple choice learning for training diverse deep ensembles. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  20. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Int. J. Rob. Res. (2015)

    Google Scholar 

  21. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. arXiv preprint arXiv:1603.02199 (2016)

  22. Li, Z., Chen, Q., Koltun, V.: Interactive image segmentation with latent diversity. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  23. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  24. Mahler, J., et al.: Dex-net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312 (2017)

  25. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Hoboken (2004)

    MATH  Google Scholar 

  26. Merget, D., Rock, M., Rigoll, G.: Robust facial landmark detection via a fully-convolutional local-global context network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  27. Miller, A.T., Allen, P.K.: Graspit! a versatile simulator for robotic grasping. IEEE Rob. Autom. Mag. (2004)

    Google Scholar 

  28. Papandreou, G., et al.: Towards accurate multi-person pose estimation in the wild. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  29. Redmon, J., Angelova, A.: Real-time grasp detection using convolutional neural networks. In: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE (2015)

    Google Scholar 

  30. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  31. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  32. Rochan, M., Ye, L., Wang, Y.: Video summarization using fully convolutional sequence networks. arXiv preprint arXiv:1805.10538 (2018)

  33. Rupprecht, C., et al.: Learning in an uncertain world: representing ambiguity through multiple hypotheses. In: International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  34. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Rob. Res. (2008)

    Google Scholar 

  35. Varley, J., DeChant, C., Richardson, A., Nair, A., Ruales, J., Allen, P.: Shape completion enabled robotic grasping. arXiv preprint arXiv:1609.08546 (2016)

  36. Vedaldi, A., Lenc, K.: MatConvNet - convolutional neural networks for MATLAB. In: Proceeding of the ACM International Conference on Multimedia (2015)

    Google Scholar 

  37. Viereck, U., Pas, A., Saenko, K., Platt, R.: Learning a visuomotor controller for real world robotic grasping using simulated depth images. In: Conference on Robot Learning (2017)

    Google Scholar 

  38. Wang, Z., Li, Z., Wang, B., Liu, H.: Robot grasp detection using multimodal deep convolutional neural networks. Adv. Mech. Eng. (2016)

    Google Scholar 

  39. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  40. Zapata-Impata, B.S.: Using geometry to detect grasping points on 3D unknown point cloud. In: International Conference on Informatics in Control, Automation and Robotics (2017)

    Google Scholar 

Download references

Acknowledgments

This work is supported by UK Engineering and Physical Sciences Research Council (EP/R004242/1). We also gratefully acknowledge the support of NVIDIA Corporation with the donation of a Titan Xp GPU used for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghazal Ghazaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghazaei, G., Laina, I., Rupprecht, C., Tombari, F., Navab, N., Nazarpour, K. (2019). Dealing with Ambiguity in Robotic Grasping via Multiple Predictions. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics