Skip to main content

Region-Semantics Preserving Image Synthesis

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

  • 1763 Accesses

Abstract

We study the problem of region-semantics preserving (RSP) image synthesis. Given a reference image and a region specification R, our goal is to train a model that is able to generate realistic and diverse images, each preserving the same semantics as that of the reference image within the region R. This problem is challenging because the model needs to (1) understand and preserve the marginal semantics of the reference region; i.e., the semantics excluding that of any subregion; and (2) maintain the compatibility of any synthesized region with the marginal semantics of the reference region. In this paper, we propose a novel model, called the fast region-semantics preserver (Fast-RSPer), for the RSP image synthesis problem. The Fast-RSPer uses a pre-trained GAN generator and a pre-trained deep feature extractor to generate images without undergoing a dedicated training phase. This makes it particularly useful for the interactive applications. We conduct extensive experiments using the real-world datasets and the results show that Fast-PSPer can synthesize realistic, diverse RSP images efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

  2. 2.

    http://lsun.cs.princeton.edu/.

  3. 3.

    https://www.tensorflow.org/.

  4. 4.

    One may notice that the images synthesized by iGAN and Fast-RSPer contains some small “holes” on the CelebA dataset. This is due to the pre-trained generator BEGAN, not the synthesis models themselves, as evidenced by Fig. 8(a).

References

  1. Agarwala, A., et al.: Interactive digital photomontage. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 294–302. ACM (2004)

    Google Scholar 

  2. Ballé, J., Laparra, V., Simoncelli, E.P.: Density modeling of images using a generalized normalization transformation. arXiv preprint arXiv:1511.06281 (2015)

  3. Berthelot, D., Schumm, T., Metz, L.: Began: boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

  4. Dosovitskiy, A., Tobias Springenberg, J., Brox, T.: Learning to generate chairs with convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1538–1546 (2015)

    Google Scholar 

  5. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)

  6. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks. arXiv preprint arXiv:1505.07376 12 (2015)

  7. Goodfellow, I., et al.: Generative adversarial Nets. In: Advances in Neural Information Processing systems, pp. 2672–2680 (2014)

    Google Scholar 

  8. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: a recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015)

    Google Scholar 

  9. Güçlütürk, Y., Güçlü, U., van Lier, R., van Gerven, M.A.J.: Convolutional sketch inversion. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 810–824. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_56

    Chapter  Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. arXiv preprint arXiv:1704.00028 (2017)

  11. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 327–340. ACM (2001)

    Google Scholar 

  12. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (TOG) 36(4), 107 (2017)

    Article  Google Scholar 

  13. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004 (2016)

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  15. Kyprianidis, J.E., Collomosse, J., Wang, T., Isenberg, T.: State of the “art": a taxonomy of artistic stylization techniques for images and video. IEEE Trans. Vis. Comput. Graph. 19(5), 866–885 (2013)

    Article  Google Scholar 

  16. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond pixels using a learned similarity metric. In: International Conference on Machine Learning, pp. 1558–1566 (2016)

    Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802 (2016)

  18. Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 609–616. ACM (2009)

    Google Scholar 

  19. Mirza, M., Osindero, S.: Conditional generative adversarial Nets. arXiv preprint arXiv:1411.1784 (2014)

  20. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Advances in Neural Information Processing Systems, pp. 3387–3395 (2016)

    Google Scholar 

  21. Nguyen, A., Yosinski, J., Bengio, Y., Dosovitskiy, A., Clune, J.: Plug & play generative networks: Conditional iterative generation of images in latent space. arXiv preprint arXiv:1612.00005 (2016)

  22. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, pp. 4790–4798 (2016)

    Google Scholar 

  23. van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning, pp. 1747–1756 (2016)

    Google Scholar 

  24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  25. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069 (2016)

    Google Scholar 

  26. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455 (2009)

    Google Scholar 

  27. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  28. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  29. Sønderby, C.K., Raiko, T., Maaløe, L., Sønderby, S.K., Winther, O.: Ladder variational autoencoders. In: Advances in Neural Information Processing Systems, pp. 3738–3746 (2016)

    Google Scholar 

  30. Toderici, G., et al.: Full resolution image compression with recurrent neural networks. arXiv preprint arXiv:1608.05148 (2016)

  31. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2Image: conditional image generation from visual attributes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 776–791. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_47

    Chapter  Google Scholar 

  32. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  33. Zhou, T., Tulsiani, S., Sun, W., Malik, J., Efros, A.A.: View synthesis by appearance flow. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 286–301. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_18

    Chapter  Google Scholar 

  34. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  35. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. arXiv preprint arXiv:1703.10593 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan-Hung Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, KJ., Fu, TJ., Wu, SH. (2019). Region-Semantics Preserving Image Synthesis. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics