Atlas-Based Automated Detection of Swim Bladder in Medaka Embryo

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11564)


Fish embryo models are increasingly being used both for the assessment of chemicals efficacy and potential toxicity. This article proposes a methodology to automatically detect the swim bladder on 2D images of medaka fish embryos seen either in dorsal view or in lateral view. After embryo segmentation and for each studied orientation, the method builds an atlas of a healthy embryo. This atlas is then used to define the region of interest and to guide the swim bladder segmentation with a discrete globally optimal active contour. Descriptors are subsequently designed from this segmentation. An automated random forest classifier is built from these descriptors in order to classify embryos with and without a swim bladder. The proposed method is assessed on a dataset of 261 images, containing 202 embryos with a swim bladder (where 196 are in dorsal view and 6 are in lateral view) and 59 with-out (where 43 are in dorsal view and 16 are in lateral view). We obtain an average precision rate of 95% in the total dataset following 5-fold cross-validation.


  1. 1.
    Ali, S., Aalders, J., Richardson, M.K.: Teratological effects of a panel of sixty water-soluble toxicants on zebrafish development. Zebrafish 11(2), 129–141 (2014)CrossRefGoogle Scholar
  2. 2.
    Appleton, B., Talbot, H.: Globally optimal geodesic active contours. J. Math. Imaging Vis. 23(1), 67–86 (2005)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)CrossRefGoogle Scholar
  4. 4.
    Bryson-Richardson, R.J., et al.: Fishnet: an online database of zebrafish anatomy. BMC Biol. 5(1), 34 (2007)CrossRefGoogle Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Embry, M.R., et al.: The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat. Toxicol. 97(2), 79–87 (2010)CrossRefGoogle Scholar
  7. 7.
    Genest, D., Puybareau, E., Léonard, M., Cousty, J., De Crozé, N., Talbot, H.: High throughput automated detection of axial malformations in medaka embryo. Comput. Biol. Med. 105, 157–168 (2019)CrossRefGoogle Scholar
  8. 8.
    Iglesias, J.E., Sabuncu, M.R.: Multi-atlas segmentation of biomedical images: a survey. Med. Image Anal. 24(1), 205–219 (2015)CrossRefGoogle Scholar
  9. 9.
    Iwamatsu, T.: Stages of normal development in the medaka oryzias latipes. Mech. Dev. 121(7–8), 605–618 (2004)CrossRefGoogle Scholar
  10. 10.
    Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the plane. Inf. Process. Lett. 2(1), 18–21 (1973)CrossRefGoogle Scholar
  11. 11.
    Kinoshita, M., Murata, K., Naruse, K., Tanaka, M.: Medaka: Biology, Management, and Experimental Protocols. Wiley, Ames (2009)CrossRefGoogle Scholar
  12. 12.
    Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)CrossRefGoogle Scholar
  13. 13.
    Klein, S., Van Der Heide, U.A., Lips, I.M., Van Vulpen, M., Staring, M., Pluim, J.P.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35(4), 1407–1417 (2008)CrossRefGoogle Scholar
  14. 14.
    Lester, H., Arridge, S.R.: A survey of hierarchical non-linear medical image registration. Pattern Recogn. 32(1), 129–149 (1999)CrossRefGoogle Scholar
  15. 15.
    Lovely, C.B., Fernandes, Y., Eberhart, J.K.: Fishing for fetal alcohol spectrum disorders: zebrafish as a model for ethanol teratogenesis. Zebrafish 13(5), 391–398 (2016)CrossRefGoogle Scholar
  16. 16.
    Maes, F., Vandermeulen, D., Suetens, P.: Medical image registration using mutual information. Proc. IEEE 91(10), 1699–1722 (2003)CrossRefGoogle Scholar
  17. 17.
    Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22(1), 120–128 (2003)CrossRefGoogle Scholar
  18. 18.
    Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. Wiley, London (2013)CrossRefGoogle Scholar
  19. 19.
    Narayanan, R., et al.: Adaptation of a 3D prostate cancer atlas for transrectal ultrasound guided target-specific biopsy. Phys. Med. Biol. 53(20), N397 (2008)CrossRefGoogle Scholar
  20. 20.
    Puybareau, É., Genest, D., Barbeau, E., Léonard, M., Talbot, H.: An automated assay for the assessment of cardiac arrest in fish embryo. Comput. Biol. Med. 81, 32–44 (2017)CrossRefGoogle Scholar
  21. 21.
    Rohlfing, T., Brandt, R., Menzel, R., Maurer Jr., C.R.: Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21(4), 1428–1442 (2004)CrossRefGoogle Scholar
  22. 22.
    Serra, J.: Image Analysis and Mathematical Morphology. Academic Press Inc., Orlando (1983)Google Scholar
  23. 23.
    Strähle, U., et al.: Zebrafish embryos as an alternative to animal experiments a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod. Toxicol. 33(2), 128–132 (2012)CrossRefGoogle Scholar
  24. 24.
    Sun, C., Pallottino, S.: Circular shortest path in images. Pattern Recogn. 36(3), 709–719 (2003)CrossRefGoogle Scholar
  25. 25.
    Thévenaz, P., Unser, M.: Optimization of mutual information for multiresolution image registration. IEEE Trans. Image Process. 9(12), 2083–2099 (2000)CrossRefGoogle Scholar
  26. 26.
    Union, E.: Directive 2010/63/EU of the European parliament and of the council of 22 september 2010 on the protection of animals used for scientific purposes. Off. J. Eur. Union 276, 33–79 (2010)Google Scholar
  27. 27.
    Yamashita, A., Inada, H., Chihara, K., Yamada, T., Deguchi, J., Funabashi, H.: Improvement of the evaluation method for teratogenicity using zebrafish embryos. J. Toxicol. Sci. 39(3), 453–464 (2014)CrossRefGoogle Scholar
  28. 28.
    Yang, X., et al.: Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Sci. Total Environ. 643, 559–568 (2018)CrossRefGoogle Scholar
  29. 29.
    Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, New York (2012). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Université Paris-Est, Laboratoire d’Informatique Gaspard Monge, CNRS, ENPC, ESIEE Paris, UPEMNoisy-le-GrandFrance
  2. 2.L’OREAL Research and InnovationAulnay-sous-BoisFrance
  3. 3.CentraleSupelec, Université Paris-Saclay, équipe OPIS-InriaGif-sur-YvetteFrance

Personalised recommendations