Skip to main content

Segmenting Junction Regions Without Skeletonization Using Geodesic Operators and the Max-Tree

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

In a 2D skeleton, a junction region indicates a connected component (CC) where a path splits into two or more different branches. In several real applications, structures of interest such as vessels, cables, fibers, wrinkles, etc. may be wider than one pixel. Since the user may be interested in the junction regions but not in the skeleton itself (e.g. in order to segment an object into single branches), it is reasonable to think about finding junction regions directly on objects avoiding skeletonization. In this paper we propose a solution to find junction regions directly on objects, which are usually elongated structures, but not necessary thin skeletons, with possible protrusions and noise. Our method is based on geodesic operators and is intended to work on binary objects without holes. In particular, our method is based on the analysis of the wavefront evolution during geodesic propagation. Our method is generic and does not require skeletonization. It provides an intuitive and straightforward way to filter short branches and protuberances. Moreover, an elegant and efficient implementation using a max-tree representation is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)

    Article  Google Scholar 

  2. Chaussard, J.: Topological tools for discrete shape analysis. Ph.D. thesis, Université Paris-Est, December 2010

    Google Scholar 

  3. Chaussard, J., Couprie, M., Talbot, H.: Robust skeletonization using the discrete lambda-medial axis. Pattern Recogn. Lett. 32(9), 1384–1394 (2011)

    Article  Google Scholar 

  4. Fabrizio, J., Marcotegui, B.: Fast implementation of the ultimate opening. In: ISMM 2009, 9th International Symposium on Mathematical Morphology, Groningen, The Netherlands, pp. 272–281 (2009)

    Google Scholar 

  5. Garrido, L., Oliveras, A., Salembier, P.: Motion analysis of image sequences using connected operators. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 3024, pp. 546–557, January 1997

    Google Scholar 

  6. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. C-20(5), 551–561 (1971)

    Article  Google Scholar 

  7. Hesselink, W.H., Visser, M., Roerdink, J.B.T.M.: Euclidean skeletons of 3D data sets in linear time by the integer medial axis transform. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On, vol. 30, pp. 259–268. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3443-1_23

    Chapter  Google Scholar 

  8. Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A.M.: Skeletonization via distance maps and level sets. Comput. Vis. Image Underst. 62(3), 382–391 (1995)

    Article  Google Scholar 

  9. Lantuéjoul, C.: Skeletonization in quantitative metallography, vol. 34, pp. 107–135. Sijthoff and Noordhoff (1980)

    Google Scholar 

  10. Lantuéjoul, C., Beucher, S.: On the use of the geodesic metric in image analysis. J. Microsc. 121(1), 39–49 (1981)

    Article  Google Scholar 

  11. Morard, V., Decencière, E., Dokládal, P.: Geodesic attributes thinnings and thickenings background: attribute thinnings. In: ISMM 2011, 10th International Conference on Mathematical Morphology, pp. 200–211 (2011)

    Chapter  Google Scholar 

  12. Morard, V., Decencière, E., Dokládal, P.: Efficient geodesic attribute thinnings based on the barycentric diameter. J. Math. Imaging Vis. 46(1), 128–142 (2013)

    Article  MathSciNet  Google Scholar 

  13. Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Process. 15(11), 3531–3539 (2006)

    Article  Google Scholar 

  14. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  15. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. 4, 1153–1160 (1995)

    Article  Google Scholar 

  16. Serra, J.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, Orlando (1982)

    MATH  Google Scholar 

  17. Serra, J.: Image Analysis and Mathematical Morphology: Theoretical Advance, vol. 2. Academic Press, Orlando (1988)

    Google Scholar 

  18. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Secaucus (2003). https://doi.org/10.1007/978-3-662-05088-0

    Book  MATH  Google Scholar 

  19. Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29(2), 272–285 (2007)

    Article  Google Scholar 

  20. Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and gray-scale shape filters. In: ISMM 2002, 8th International Symposium on Mathematical Morphology, pp. 305–314 (2002)

    Google Scholar 

  21. Vincent, L.: Efficient computation of various types of skeletons. In: Medical Imaging V: Image Processing, vol. 1445, pp. 297–312. International Society for Optics and Photonics (1991)

    Google Scholar 

  22. Vincent, L.: Morphological grayscale reconstruction in image analysis: efficient algorithms and applications. IEEE Trans. Image Process. 2, 176–201 (1993)

    Article  Google Scholar 

  23. Huang, X., Fisher, M., Smith, D.J.: An efficient implementation of max tree with linked list and hash table. In: DICTA (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Serna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serna, A., Marcotegui, B., Decencière, E. (2019). Segmenting Junction Regions Without Skeletonization Using Geodesic Operators and the Max-Tree. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics