Skip to main content

Detecting Branching Nodes of Multiply Connected 3D Structures

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

In order to detect and analyze branching nodes in 3D images of micro-structures, the topology preserving thinning algorithm of Couprie and Zrour is jointly used with a constraint set derived from the spherical granulometry image. The branching points in the thus derived skeleton are subsequently merged guided by the local structure thickness as provided by the spherical granulometry. This enables correct merging of nodes and thus a correct calculation of the nodes’ valences. The algorithm is validated using two synthetic foam structures with known vertices and valences. Subsequently, the algorithm is applied to micro-computed tomography data of a rigid aluminium foam where the valence is known, to the pore space of polar firn samples, and to corrosion casts of mice livers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Couprie, M., Zrour, R.: Discrete bisector function and euclidean skeleton. In: Andres, E., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 216–227. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31965-8_21

    Chapter  MATH  Google Scholar 

  2. Dong, H., Blunt, M.J.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80, 036307 (2009)

    Article  Google Scholar 

  3. Hormann, K., Baranau, V., Hlushkou, D., Höltzel, A., Tallarek, U.: Topological analysis of non-granular, disordered porous media: determination of pore connectivity, pore coordination, and geometric tortuosity in physically reconstructed silica monoliths. New J. Chem. 40, 4187–4199 (2016)

    Article  Google Scholar 

  4. Häbel, H., et al.: A three-dimensional anisotropic point process characterization for pharmaceutical coatings. Spat. Stat. 22, 306–320 (2017)

    Article  MathSciNet  Google Scholar 

  5. Klette, G.: Branch voxels and junctions in 3D skeletons. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds.) IWCIA 2006. LNCS, vol. 4040, pp. 34–44. Springer, Heidelberg (2006). https://doi.org/10.1007/11774938_4

    Chapter  Google Scholar 

  6. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48, 357–393 (1989)

    Article  Google Scholar 

  7. Lautensack, C., Sych, T.: A random Weaire-Phelan foam. In: 8th International Conference on Stereology and Image Analysis in Materials Science STERMAT 2008, Zakopane, Poland (2008)

    Google Scholar 

  8. Liebscher, A.: Stochastic modelling of foams. Ph.D. thesis, Technische Universität Kaiserslautern (2014)

    Google Scholar 

  9. Liebscher, A., Redenbach, C.: 3D image analysis and stochastic modelling of open foams. Int. J. Mater. Res. 103(2), 155–161 (2012)

    Article  Google Scholar 

  10. Liebscher, A., Redenbach, C.: Statistical analysis of the local strut thickness of open cell foams. Image Anal. Stereology 32(1), 1–12 (2013)

    Article  MathSciNet  Google Scholar 

  11. Lindquist, W.B., Venkatarangan, A., Dunsmuir, J., Wong, T.-F.: Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones. J. Geophys. Research 105B, 21508–21528 (2000)

    Google Scholar 

  12. Ohser, J., Schladitz, K.: 3D Images of Materials Structures - Processing and Analysis. Wiley VCH, Weinheim (2009)

    Book  Google Scholar 

  13. Otsu, N.: A threshold selection method from gray level histograms. IEEE Trans. Syst. Man Cybern. 9, 62–66 (1979)

    Article  Google Scholar 

  14. Redenbach, C.: Microstructure models for cellular materials. Comput. Mater. Sci. 44, 1397–1407 (2009)

    Article  Google Scholar 

  15. Remy, E., Thiel, E.: Look-up tables for medial axis on squared euclidean distance transform. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 224–235. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39966-7_21

    Chapter  MATH  Google Scholar 

  16. Remy, E., Thiel, E.: Exact medial axis with euclidean distance. Image Vis. Comput. 23(2), 167–175 (2005)

    Article  Google Scholar 

  17. Schladitz, K., Redenbach, C., Sych, T., Godehardt, M.: Model based estimation of geometric characteristics of open foams. Methodol. Comput. Appl. Probab. 14, 1011–1032 (2012)

    Article  MathSciNet  Google Scholar 

  18. Sheppard, A., Sok, R., Averdunk, H.: Improved pore network extraction methods. In: International Symposium of the Society of Core Analysts (2005)

    Google Scholar 

  19. Silin, D., Patzek, T.: Pore space morphology analysis using maximal inscribed spheres. Physica A Stat. Theoret. Phys. 371, 336–360 (2006)

    Article  Google Scholar 

  20. Soille, P.: Morphological Image Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-662-05088-0

    Book  MATH  Google Scholar 

  21. Vecchio, I., Redenbach, C., Schladitz, K.: Angles in Laguerre tessellation models for solid foams. Comput. Mater. Sci. 83, 171–184 (2014)

    Article  Google Scholar 

  22. Weaire, D., Phelan, R.: A counter-example to Kelvin’s conjecture on minimal surfaces. Philos. Mag. Lett. 69(2), 107–110 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

We thank André Liebscher for providing the foam data, Johannes Freitag and Tetsuro Taranczewski for the firn data, and Maximilian Ackermann and Willi Wagner for the mice liver data. This work was supported by the Fraunhofer High Performance Center for Simulation- and Software-Based Innovation, by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority programme “Antarctic Research with comparative investigations in Arctic ice areas”, grant RE 3002/3-1, and by the German Federal Ministry of Education and Research (BMBF), grant 05M16UKA (AMSCHA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, X., Föhst, S., Redenbach, C., Schladitz, K. (2019). Detecting Branching Nodes of Multiply Connected 3D Structures. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics