Advertisement

Plane Wave Reflection and Refraction

  • Kurt E. Oughstun
Chapter
  • 439 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 224)

Abstract

A practical problem of fundamental importance in electromagnetic wave theory concerns the reflection and transmission of an electromagnetic wave at an interface separating two different material media. As this problem can become rather complicated for a general pulsed wave field incident upon the surface S of a dispersive body immersed in a dispersive medium, it is best to consider first the much simpler case of a time-harmonic (monochromatic) plane wave field incident upon an infinitely extended plane surface. The general solution to this problem will then form the basis for the analysis of the more general problem of a pulsed electromagnetic beam field incident upon a planar interface separating two different dispersive media. This more general problem is treated in some detail in Volume 2.

References

  1. 1.
    M. Born and E. Wolf, Principles of Optics. Cambridge: Cambridge University Press, seventh (expanded) ed., 1999.Google Scholar
  2. 2.
    G. Green, “On the reflexion and refraction of sound,” Trans. Cambridge Phil. Soc., vol. 6, p. 403, 1838.ADSGoogle Scholar
  3. 3.
    A. Fresnel, “La réflexion de la lumière,” in Oeuvres, vol. 1, p. 767, Paris: Imprimerie Imperiale, 1866.Google Scholar
  4. 4.
    J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.zbMATHGoogle Scholar
  5. 5.
    C. A. Balanis, Advanced Engineering Electromagnetics. Wiley, second ed., 2012.Google Scholar
  6. 6.
    J. E. Roy, “New results for the effective propagation constants of nonuniform plane waves at the planar interface of two lossy media,” IEEE Transactions on Antennas and Propagation, vol. 51, pp. 1206–1215, 2003.ADSCrossRefGoogle Scholar
  7. 7.
    I. M. Besieris, “Comment on the ‘Corrected Fresnel coefficients for lossy materials’,” IEEE Antennas and Propagation Magazine, vol. 53, no. 4, pp. 161–164, 2011.ADSCrossRefGoogle Scholar
  8. 8.
    F. X. Canning, “Corrected Fresnel coefficients for lossy materials,” in Proceedings of the 2011 IEEE International Symposium on Antennas and Propagation, pp. 2133–2136, 2011.Google Scholar
  9. 9.
    G. P. Ohman, “The pseudo-Brewster angle,” IEEE Trans. Antennas and Propagation, vol. 25, no. 6, pp. 903–904, 1977.ADSCrossRefGoogle Scholar
  10. 10.
    S. Y. Kim and K. Vedam, “Analytic solution of the pseudo-Brewster angle,” J. Opt. Soc. Am. A, vol. 3, no. 11, pp. 1772–1773, 1986.ADSCrossRefGoogle Scholar
  11. 11.
    M. Born, Optik. Berlin: Springer, 1933.CrossRefGoogle Scholar
  12. 12.
    L. Rosenfeld, Theory of Electrons. Amsterdam: North-Holland, 1951.zbMATHGoogle Scholar
  13. 13.
    É. Lalor and E. Wolf, “Exact solution of the equations of molecular optics for reflection and reflection of an electromagnetic wave on a semi-infinite dielectric,” J. Opt. Soc. Am., vol. 62, no. 10, pp. 1165–1174, 1972.ADSCrossRefGoogle Scholar
  14. 14.
    H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Ch. 1.Google Scholar
  15. 15.
    C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles. New York: Wiley-Interscience, 1984. Ch. 9.Google Scholar
  16. 16.
    H. A. Lorentz, “Über die Beziehungzwischen der Fortpflanzungsgeschwindigkeit des Lichtes der Körperdichte,” Ann. Phys., vol. 9, pp. 641–665, 1880.CrossRefGoogle Scholar
  17. 17.
    L. Lorenz, “Über die Refractionsconstante,” Ann. Phys., vol. 11, pp. 70–103, 1880.CrossRefGoogle Scholar
  18. 18.
    P. F. Mossotti, “x,” Bibl. Univ. Modena, vol. 6, p. 193, 1847.Google Scholar
  19. 19.
    R. Clausius, “Die Mechanische Wärmetheorie,” vol. 2, pp. 62–97, Braunschweich: Vieweg, 1879.Google Scholar
  20. 20.
    P. P. Ewald, “Zur begründung der kristalloptik,” Ann. d. Physik, vol. 48, p. 1, 1916.ADSCrossRefGoogle Scholar
  21. 21.
    C. W. Oseen, “About the interaction between two electric dipoles and the rotation of the polarization plane in crystals and liquids,” Ann. d. Physik, vol. 49, p. 1, 1915.ADSCrossRefGoogle Scholar
  22. 22.
    L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media. Oxford: Pergamon, 1960. Ch. IX.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  1. 1.College of Engineering and Mathematical Sciences, University of VermontBurlingtonUSA

Personalised recommendations