Advertisement

Introduction

  • Kurt E. Oughstun
Chapter
  • 414 Downloads
Part of the Springer Series in Optical Sciences book series (SSOS, volume 224)

Abstract

The dynamical evolution of an electromagnetic pulse as it propagates through a linear, temporally dispersive medium (such as water) or system (such as a dielectric waveguide) is a classical problem in both electromagnetics and optics. With Maxwell’s unifying theory of electromagnetism and optics, Lorentz’s classical model of dielectric dispersion, and Einstein’s special theory of relativity, the stage was set for a long-standing problem of some controversy in classical physics, engineering, and applied mathematics. If the system was nondispersive, an arbitrary plane wave pulse would propagate unaltered in shape at the phase velocity of the wave field in the medium. For example, for distortionless wave propagation along the z-direction of a cartesian coordinate system, a one-dimensional wave is described by a single-valued function of the form f(z ± vt), where the argument φ = z ± vt is called the phase of the wave function. Any fixed value of this phase (for example, the value at the temporal center of the pulse) then propagates undistorted in shape along the ± z-direction with the velocity dzdt = ±v. The first partial derivatives of the wave function f(z ± vt) with respect to the independent variables z and t are then given by ∂f∂z = f′ and ∂f∂t = ±vf′, where f′ = df(ζ)∕.

References

  1. 1.
    J. C. Maxwell, “A dynamical theory of the electromagnetic field,” Phil. Trans. Roy. Soc. (London), vol. 155, pp. 450–521, 1865.Google Scholar
  2. 2.
    J. C. Maxwell, A Treatise on Electricity and Magnetism. Oxford: Oxford University Press, 1873.zbMATHGoogle Scholar
  3. 3.
    H. A. Lorentz, The Theory of Electrons. Leipzig: Teubner, 1906. Ch. IV.Google Scholar
  4. 4.
    A. Einstein, “Zur elektrodynamik bewegter körper,” Ann. Phys., vol. 17, pp. 891–921, 1905.zbMATHCrossRefGoogle Scholar
  5. 5.
    R. B. Lindsay, Mechanical Radiation. New York: McGraw-Hill, 1960. Ch. 1.Google Scholar
  6. 6.
    J. S. Toll, “Causality and the dispersion relation: Logical foundations,” Phys. Rev., vol. 104, no. 6, pp. 1760–1770, 1956.ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. M. Nussenzveig, Causality and Dispersion Relations. New York: Academic, 1972. Ch. 1.Google Scholar
  8. 8.
    A. Sommerfeld, “Ein einwand gegen die relativtheorie der elektrodynamok und seine beseitigung,” Phys. Z., vol. 8, p. 841, 1907.zbMATHGoogle Scholar
  9. 9.
    A. Sommerfeld, “Über die fortpflanzung des lichtes in disperdierenden medien,” Ann. Phys., vol. 44, pp. 177–202, 1914.CrossRefGoogle Scholar
  10. 10.
    L. Brillouin, “Über die fortpflanzung des licht in disperdierenden medien,” Ann. Phys., vol. 44, pp. 204–240, 1914.Google Scholar
  11. 11.
    L. Brillouin, Wave Propagation and Group Velocity. New York: Academic, 1960.zbMATHGoogle Scholar
  12. 12.
    K. E. Oughstun, “Dynamical evolution of the precursor fields in linear dispersive pulse propagation in lossy dielectrics,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 257–272, New York: Plenum, 1994.Google Scholar
  13. 13.
    J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941.zbMATHGoogle Scholar
  14. 14.
    K. E. Oughstun, Propagation of Optical Pulses in Dispersive Media. PhD thesis, The Institute of Optics, University of Rochester, 1978.Google Scholar
  15. 15.
    K. E. Oughstun and G. C. Sherman, “Propagation of electromagnetic pulses in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. B, vol. 5, no. 4, pp. 817–849, 1988.ADSCrossRefGoogle Scholar
  16. 16.
    S. Shen and K. E. Oughstun, “Dispersive pulse propagation in a double-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 6, pp. 948–963, 1989.ADSCrossRefGoogle Scholar
  17. 17.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of electromagnetic pulse propagation in a linear dispersive medium with absorption (the Lorentz medium),” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1394–1420, 1989.ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    K. E. Oughstun and G. C. Sherman, “Uniform asymptotic description of ultrashort rectangular optical pulse propagation in a linear, causally dispersive medium,” Phys. Rev. A, vol. 41, no. 11, pp. 6090–6113, 1990.ADSCrossRefGoogle Scholar
  19. 19.
    C. M. Balictsis and K. E. Oughstun, “Uniform asymptotic description of ultrashort Gaussian pulse propagation in a causal, dispersive dielectric,” Phys. Rev. E, vol. 47, no. 5, pp. 3645–3669, 1993.ADSCrossRefGoogle Scholar
  20. 20.
    K. E. Oughstun, “Noninstantaneous, finite rise-time effects on the precursor field formation in linear dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 12, pp. 1715–1729, 1995.ADSCrossRefGoogle Scholar
  21. 21.
    J. A. Solhaug, K. E. Oughstun, J. J. Stamnes, and P. Smith, “Uniform asymptotic description of the Brillouin precursor in a single-resonance Lorentz model dielectric,” Pure Appl. Opt., vol. 7, no. 3, pp. 575–602, 1998.ADSCrossRefGoogle Scholar
  22. 22.
    N. A. Cartwright and K. E. Oughstun, “Uniform asymptotics applied to ultrawideband pulse propagation,” SIAM Rev., vol. 49, no. 4, pp. 628–648, 2007.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    F. W. J. Olver, “Why steepest descents,” SIAM Rev., vol. 12, no. 2, pp. 228–247, 1970.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    C. Chester, B. Friedman, and F. Ursell, “An extension of the method of steepest descents,” Proc. Cambridge Phil. Soc., vol. 53, pp. 599–611, 1957.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    N. Bleistein, “Uniform asymptotic expansions of integrals with stationary point near algebraic singularity,” Com. Pure and Appl. Math., vol. XIX, no. 4, pp. 353–370, 1966.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    N. Bleistein, “Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities,” J. Math. Mech, vol. 17, no. 6, pp. 533–559, 1967.MathSciNetzbMATHGoogle Scholar
  27. 27.
    R. A. Handelsman and N. Bleistein, “Uniform asymptotic expansions of integrals that arise in the analysis of precursors,” Arch. Rat. Mech. Anal., vol. 35, pp. 267–283, 1969.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    L. Felsen and N. Marcuvitz, Radiation and Scattering of Waves. Englewood Cliffs, NJ: Prentice-Hall, 1973.zbMATHGoogle Scholar
  29. 29.
    N. Bleistein and R. Handelsman, Asymptotic Expansions of Integrals. New York: Dover, 1975.zbMATHGoogle Scholar
  30. 30.
    K. E. Oughstun, P. Wyns, and D. P. Foty, “Numerical determination of the signal velocity in dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1430–1440, 1989.ADSCrossRefGoogle Scholar
  31. 31.
    K. E. Oughstun and H. Xiao, “Failure of the quasimonochromatic approximation for ultrashort pulse propagation in a dispersive, attenuative medium,” Phys. Rev. Lett., vol. 78, no. 4, pp. 642–645, 1997.ADSCrossRefGoogle Scholar
  32. 32.
    H. Xiao and K. E. Oughstun, “Failure of the group velocity description for ultrawideband pulse propagation in a double resonance Lorentz model dielectric,” J. Opt. Soc. Am. B, vol. 16, no. 10, pp. 1773–1785, 1999.ADSCrossRefGoogle Scholar
  33. 33.
    C. M. Balictsis and K. E. Oughstun, “Uniform asymptotic description of Gaussian pulse propagation of arbitrary initial pulse width in a linear, causally dispersive medium,” in Ultra-Wideband, Short-Pulse Electromagnetics 2 (L. Carin and L. B. Felsen, eds.), pp. 273–283, New York: Plenum, 1994.CrossRefGoogle Scholar
  34. 34.
    K. E. Oughstun and C. M. Balictsis, “Gaussian pulse propagation in a dispersive, absorbing dielectric,” Phys. Rev. Lett., vol. 77, no. 11, pp. 2210–2213, 1996.ADSCrossRefGoogle Scholar
  35. 35.
    C. M. Balictsis and K. E. Oughstun, “Generalized asymptotic description of the propagated field dynamics in Gaussian pulse propagation in a linear, causally dispersive medium,” Phys. Rev. E, vol. 55, no. 2, pp. 1910–1921, 1997.ADSCrossRefGoogle Scholar
  36. 36.
    G. P. Agrawal, Nonlinear Fiber Optics. Academic, 1989.zbMATHGoogle Scholar
  37. 37.
    M. N. Islam, Ultrafast Fiber Switching Devices and Systems. Cambridge: Cambridge University Press, 1992.Google Scholar
  38. 38.
    C. Rullière, ed., Femtosecond Laser Pulses: Principles and Experiments. Berlin: Springer-Verlag, 1998.Google Scholar
  39. 39.
    W. R. Hamilton, “Researches respecting vibration, connected with the theory of light,” Proc. Royal Irish Academy, vol. 1, pp. 341–349, 1839.Google Scholar
  40. 40.
    G. G. Stokes, “Smith’s prize examination question no. 11,” in Mathematical and Physical Papers, vol. 5, Cambridge University Press, 1905. pg. 362.Google Scholar
  41. 41.
    L. Rayleigh, “On progressive waves,” Proc. London Math. Soc., vol. IX, pp. 21–26, 1877.MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    L. Rayleigh, “On the velocity of light,” Nature, vol. XXIV, pp. 52–55, 1881.ADSCrossRefGoogle Scholar
  43. 43.
    M. Born and E. Wolf, Principles of Optics. Cambridge: Cambridge University Press, seventh (expanded) ed., 1999.Google Scholar
  44. 44.
    K. E. Oughstun and G. C. Sherman, Pulse Propagation in Causal Dielectrics. Berlin: Springer-Verlag, 1994.CrossRefGoogle Scholar
  45. 45.
    P. Drude, Lehrbuch der Optik. Leipzig: Teubner, 1900. Ch. V.Google Scholar
  46. 46.
    E. Mach, The Principles of Physical Optics: An Historical and Philosophical Treatment. New York: First German edition 1913. English translation 1926, reprinted by Dover, 1953. Ch. VII.Google Scholar
  47. 47.
    F. A. Jenkins and H. E. White, Fundamentals of Optics. New York: McGraw-Hill, third ed., 1957. Ch. 23.Google Scholar
  48. 48.
    W. Voigt, “Über die änderung der schwingungsform des lichtes beim fortschreiten in einem dispergirenden oder absorbirenden mittel,” Ann. Phys. und Chem. (Leipzig), vol. 68, pp. 598–603, 1899.ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    W. Voigt, “Weiteres zur änderung der schwingungsform des lichtes beim fortschreiten in einem dispergirenden oder absorbirenden mittel,” Ann. Phys. (Leipzig), vol. 4, pp. 209–214, 1901.ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    P. Ehrenfest, “Mißt der aberrationswinkel in fall einer dispersion des äthers die wellengeschwindigkeit?,” Ann. Phys. (Leipzig), vol. 33, p. 1571, 1910.ADSzbMATHCrossRefGoogle Scholar
  51. 51.
    A. Laue, “Die fortpflanzung der strahlung in dispergierenden und absorpierenden medien,” Ann. Phys., vol. 18, p. 523, 1905.zbMATHCrossRefGoogle Scholar
  52. 52.
    P. Debye, “Näherungsformeln für die zylinderfunktionen für grosse werte des arguments und unbeschränkt verander liche werte des index,” Math Ann., vol. 67, pp. 535–558, 1909.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    R. Mosseri, “Léon Brillouin: une vie à la croisée des ondes,” Sciences et Vie, vol. numero special “200 ans de sciences 1789-1989”, pp. 256–261, 1989.Google Scholar
  54. 54.
    W. Colby, “Signal propagation in dispersive media,” Phys. Rev., vol. 5, no. 3, pp. 253–265, 1915.ADSCrossRefGoogle Scholar
  55. 55.
    T. H. Havelock, “The propagation of groups of waves in dispersive media,” Proc. Roy. Soc. A, vol. LXXXI, p. 398, 1908.Google Scholar
  56. 56.
    T. H. Havelock, The Propagation of Disturbances in Dispersive Media. Cambridge: Cambridge University Press, 1914.Google Scholar
  57. 57.
    L. Kelvin, “On the waves produced by a single impulse in water of any depth, or in a dispersive medium,” Proc. Roy. Soc., vol. XLII, p. 80, 1887.Google Scholar
  58. 58.
    E. T. Copson, Asymptotic Expansions. London: Cambridge University Press, 1965.zbMATHCrossRefGoogle Scholar
  59. 59.
    P. M. Morse and H. Feshbach, Methods of Theoretical Physics. New York: McGraw-Hill, 1953. Vol. I.Google Scholar
  60. 60.
    H. Baerwald, “Über die fortpflanzung von signalen in disperdierenden medien,” Ann. Phys., vol. 7, pp. 731–760, 1930.CrossRefGoogle Scholar
  61. 61.
    N. S. Shiren, “Measurement of signal velocity in a region of resonant absorption by ultrasonic paramagnetic resonance,” Phys. Rev., vol. 128, pp. 2103–2112, 1962.ADSCrossRefGoogle Scholar
  62. 62.
    T. A. Weber and D. B. Trizna, “Wave propagation in a dispersive and emissive medium,” Phys. Rev., vol. 144, pp. 277–282, 1966.ADSCrossRefGoogle Scholar
  63. 63.
    P. Pleshko and I. Palócz, “Experimental observation of Sommerfeld and Brillouin precursors in the microwave domain,” Phys. Rev. Lett., vol. 22, pp. 1201–1204, 1969.ADSCrossRefGoogle Scholar
  64. 64.
    O. Avenel, M. Rouff, E. Varoquaux, and G. A. Williams, “Resonant pulse propagation of sound in superfluid 3 He − B,” Phys. Rev. Lett., vol. 50, no. 20, pp. 1591–1594, 1983.ADSCrossRefGoogle Scholar
  65. 65.
    E. Varoquaux, G. A. Williams, and O. Avenel, “Pulse propagation in a resonant medium: Application to sound waves in superfluid 3 He − B,” Phys. Rev. B, vol. 34, no. 11, pp. 7617–7640, 1986.ADSCrossRefGoogle Scholar
  66. 66.
    C. Eckart, “The approximate solution of one-dimensional wave equations,” Rev. Modern Physics, vol. 20, pp. 399–417, 1948.ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    G. B. Whitham, “Group velocity and energy propagation for three-dimensional waves,” Comm. Pure Appl. Math., vol. XIV, pp. 675–691, 1961.MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    M. J. Lighthill, “Group velocity,” J. Inst. Maths. Applics., vol. 1, pp. 1–28, 1964.MathSciNetCrossRefGoogle Scholar
  69. 69.
    L. J. F. Broer, “On the propagation of energy in linear conservative waves,” Appl. Sci. Res., vol. A2, pp. 329–344, 1950.MathSciNetzbMATHGoogle Scholar
  70. 70.
    C. O. Hines, “Wave packets, the Poynting vector, and energy flow: Part I – Non-dissipative (anisotropic) homogeneous media,” J. Geophysical Research, vol. 56, no. 1, pp. 63–72, 1951.ADSCrossRefGoogle Scholar
  71. 71.
    M. A. Biot, “General theorems on the equivalence of group velocity and energy velocity,” Phys. Rev., vol. 105, pp. 1129–1137, 1957.ADSzbMATHCrossRefGoogle Scholar
  72. 72.
    C. O. Hines, “Wave packets, the Poynting vector, and energy flow: Part II – Group propagation through dissipative isotropic media,” J. Geophysical Research, vol. 56, no. 2, pp. 197–220, 1951.ADSCrossRefGoogle Scholar
  73. 73.
    C. O. Hines, “Wave packets, the Poynting vector, and energy flow: Part III – Poynting and Macdonald velocities in dissipative anisotropic media (conclusions),” J. Geophysical Research, vol. 56, no. 4, pp. 535–544, 1951.ADSCrossRefGoogle Scholar
  74. 74.
    R. M. Lewis, “Asymptotic theory of wave-propagation,” Archive Rational Mech. Analysis, vol. 20, pp. 191–250, 1965.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    R. M. Lewis, “Asymptotic theory of transients,” in Electromagnetic Wave Theory (J. Brown, ed.), pp. 845–869, New York: Pergamon, 1967.CrossRefGoogle Scholar
  76. 76.
    Y. A. Kravtsov, L. A. Ostrovsky, and N. S. Stepanov, “Geometrical optics of inhomogeneous and nonstationary dispersive media,” Proc. IEEE, vol. 62, pp. 1492–1510, 1974.ADSCrossRefGoogle Scholar
  77. 77.
    D. Censor, “The group Doppler effect,” Journal Franklin Inst., vol. 299, pp. 333–338, 1975.ADSCrossRefGoogle Scholar
  78. 78.
    D. Censor, “Fermat’s principle and real space-time rays in absorbing media,” J. Phys. A, vol. 10, pp. 1781–1790, 1977.ADSCrossRefGoogle Scholar
  79. 79.
    D. Censor, “Wave packets and localized pulses – A dual approach,” Phys. Rev. A, vol. 24, pp. 1452–1459, 1981.ADSCrossRefGoogle Scholar
  80. 80.
    V. Krejči and L. Pekárek, “Determination of dispersion curve parameters from transient wave,” Czech. J. Phys., vol. 17, 1967.ADSCrossRefGoogle Scholar
  81. 81.
    L. B. Felsen, “Rays, dispersion surfaces and their uses for radiation and diffraction problems,” SIAM Rev., vol. 12, pp. 424–448, 1970.CrossRefGoogle Scholar
  82. 82.
    K. A. Connor and L. B. Felsen, “Complex space-time rays and their application to pulse propagation in lossy dispersive media,” Proc. IEEE, vol. 62, pp. 1586–1598, 1974.ADSCrossRefGoogle Scholar
  83. 83.
    J. Arnaud, “A theory of Gaussian pulse propagation,” Opt. Quantum Electron., vol. 16, pp. 125–130, 1984.CrossRefGoogle Scholar
  84. 84.
    L. B. Felsen, “Transients in dispersive media-I. Theory,” IEEE Trans. Antennas Prop., vol. 17, pp. 191–200, 1969.ADSCrossRefGoogle Scholar
  85. 85.
    G. M. Whitham and L. B. Felsen, “Transients in dispersive media-Part II: Excitation of space waves in a bounded cold magnetoplasma,” IEEE Trans. Antennas Prop., vol. 17, pp. 200–208, 1969.ADSCrossRefGoogle Scholar
  86. 86.
    L. B. Felsen, “Asymptotic theory of pulse compression in dispersive media,” IEEE Trans. Antennas Prop., vol. 19, pp. 424–432, 1971.ADSCrossRefGoogle Scholar
  87. 87.
    E. Heyman, “Complex source pulsed beam expansion of transient radiation,” Wave Motion, vol. 11, pp. 337–349, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  88. 88.
    E. Heyman and L. B. Felsen, “Weakly dispersive spectral theory of transients (SST). Part I: Formulation and interpretation,” IEEE Trans. Antennas Prop., vol. 35, pp. 80–86, 1987.ADSzbMATHCrossRefGoogle Scholar
  89. 89.
    E. Heyman and L. B. Felsen, “Weakly dispersive spectral theory of transients (SST). Part II: Evaluation of the spectral integral,” IEEE Trans. Antennas Prop., vol. 35, pp. 574–580, 1987.ADSzbMATHCrossRefGoogle Scholar
  90. 90.
    E. Heyman and L. B. Felsen, “Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics,” J. Opt. Soc. Am. A, vol. 18, pp. 1588–1611, 2001.ADSCrossRefGoogle Scholar
  91. 91.
    T. Melamed, E. Heyman, and L. B. Felsen, “Local spectral analysis of short-pule-excited scattering from weakly inhomogeneous media. Part I: Forward scattering,” IEEE Trans. Antennas Prop., vol. 47, pp. 1208–1217, 1999.ADSzbMATHCrossRefGoogle Scholar
  92. 92.
    T. Melamed, E. Heyman, and L. B. Felsen, “Local spectral analysis of short-pule-excited scattering from weakly inhomogeneous media. Part I: Inverse scattering,” IEEE Trans. Antennas Prop., vol. 47, pp. 1218–1227, 1999.ADSzbMATHCrossRefGoogle Scholar
  93. 93.
    T. Melamed and L. B. Felsen, “Pulsed-beam propagation in lossless dispersive media. I. A numerical example,” J. Opt. Soc. Am. A, vol. 15, pp. 1277–1284, 1998.ADSCrossRefGoogle Scholar
  94. 94.
    T. Melamed and L. B. Felsen, “Pulsed-beam propagation in lossless dispersive media. II. Theory,” J. Opt. Soc. Am. A, vol. 15, pp. 1268–1276, 1998.ADSCrossRefGoogle Scholar
  95. 95.
    J. D. Jackson, Classical Electrodynamics. New York: John Wiley & Sons, third ed., 1999.zbMATHGoogle Scholar
  96. 96.
    R. S. Elliott, “Pulse waveform degradation due to dispersion in waveguide,” IRE Trans. Microwave Theory Tech., vol. 5, pp. 254–257, 1957.ADSCrossRefGoogle Scholar
  97. 97.
    M. P. Forrer, “Analysis of millimicrosecond RF pulse transmission,” Proc. IRE, vol. 46, pp. 1830–1835, 1958.CrossRefGoogle Scholar
  98. 98.
    R. D. Wanselow, “Rectangular pulse distortion due to a nonlinear complex transmission propagation constant,” J. Franklin Inst., vol. 274, pp. 178–184, 1962.CrossRefGoogle Scholar
  99. 99.
    C. M. Knop and G. I. Cohn, “Comments on pulse waveform degradation due to dispersion in waveguide,” IEEE Trans. Microwave Theory Tech., vol. 11, pp. 445–447, 1963.ADSCrossRefGoogle Scholar
  100. 100.
    C. M. Knop, “Pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 12, pp. 494–496, 1964.ADSCrossRefGoogle Scholar
  101. 101.
    C. T. Case and R. E. Haskell, “On pulsed electromagnetic wave propagation in dispersive media,” IEEE Trans. Antennas Prop., vol. 14, p. 401, 1966.ADSCrossRefGoogle Scholar
  102. 102.
    L. E. Vogler, “An exact solution for wave-form distortion of arbitrary signals in ideal wave guides,” Radio Sci., vol. 5, pp. 1469–1474, 1970.ADSCrossRefGoogle Scholar
  103. 103.
    J. R. Wait, “Propagation of pulses in dispersive media,” Radio Sci., vol. 69D, pp. 1387–1401, 1965.Google Scholar
  104. 104.
    R. E. Haskell and C. T. Case, “Transient signal propagation in lossless, isotropic plasmas,” IEEE Trans. Antennas Prop., vol. 15, no. 3, pp. 458–464, 1967.ADSCrossRefGoogle Scholar
  105. 105.
    R. E. Haskell and C. T. Case, “Transient signal propagation in lossless, isotropic plasmas: Volume I,” Tech. Rep. No. 212, Physical Sciences Research Papers, Microwave Physics Laboratory, Air Force Cambridge Research Laboratories, 1966.Google Scholar
  106. 106.
    R. E. Haskell and C. T. Case, “Transient signal propagation in lossless, isotropic plasmas: Volume II,” Tech. Rep. No. 241, Physical Sciences Research Papers, Microwave Physics Laboratory, Air Force Cambridge Research Laboratories, 1966.Google Scholar
  107. 107.
    D. Ludwig, “Uniform asymptotic expansions for wave propagation and diffraction problems,” SIAM Rev., vol. 12, pp. 325–331, 1970.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    M. D. Crisp, “Propagation of small-area pulses of coherent light through a resonant medium,” Phys. Rev. A, vol. 1, no. 6, pp. 1604–1611, 1970.ADSCrossRefGoogle Scholar
  109. 109.
    S. L. McCall and E. L. Hahn, “Self-induced transparency by pulsed coherent light,” Phys. Rev. Lett., vol. 18, no. 21, pp. 908–912, 1967.ADSCrossRefGoogle Scholar
  110. 110.
    B. R. Horowitz and T. Tamir, “Unified theory of total reflection phenomena at a dielectric interface,” Applied Phys., vol. 1, pp. 31–38, 1973.ADSCrossRefGoogle Scholar
  111. 111.
    C. C. Chan and T. Tamir, “Beam phenomena at and near critical incidence upon a dielectric interface,” J. Opt. Soc. Am. A, vol. 4, pp. 655–663, 1987.ADSCrossRefGoogle Scholar
  112. 112.
    F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Physik, vol. 6, no. 1, pp. 333–345, 1947.ADSCrossRefGoogle Scholar
  113. 113.
    E. G. Skrotskaya, A. N. Makhlin, V. A. Kashin, and G. V. Skrotskiĭ, “Formation of a forerunner in the passage of the front of a light pulse through a vacuum-medium interface,” Zh. Eksp. Teor. Fiz., vol. 56, no. 1, pp. 220–226, 1969. [English translation: Sov. Phys. JETP vol. 29, 123–125 (1969].Google Scholar
  114. 114.
    E. Gitterman and M. Gitterman, “Transient processes for incidence of a light signal on a vacuum-medium interface,” Phys. Rev. A, vol. 13, pp. 763–776, 1976.ADSCrossRefGoogle Scholar
  115. 115.
    J. G. Blaschak and J. Franzen, “Precursor propagation in dispersive media from short-rise-time pulses at oblique incidence,” J. Opt. Soc. Am. A, vol. 12, no. 7, pp. 1501–1512, 1995.ADSCrossRefGoogle Scholar
  116. 116.
    N. A. Cartwright, “Electromagnetic plane-wave pulse transmission into a Lorentz half-space,” J. Opt. Soc. Am. A, vol. 28, no. 12, pp. 2647–2654, 2011.ADSCrossRefGoogle Scholar
  117. 117.
    J. A. Marozas and K. E. Oughstun, “Electromagnetic pulse propagation across a planar interface separating two lossy, dispersive dielectrics,” in Ultra-Wideband, Short-Pulse Electromagnetics 3 (C. Baum, L. Carin, and A. P. Stone, eds.), pp. 217–230, New York: Plenum, 1996.CrossRefGoogle Scholar
  118. 118.
    J. M. Stone, Radiation and Optics, An Introduction to the Classical Theory. New York: McGraw-Hill, 1963.Google Scholar
  119. 119.
    C. L. Palombini and K. E. Oughstun, “Reflection and transmission of pulsed electromagnetic fields through multilayered biological media,” in Proc. 2011 International Conference on Electromagnetics in Advanced Applications, 2011. paper #216.Google Scholar
  120. 120.
    J. R. Wait, “Electromagnetic-pulse propagation in a simple dispersive medium,” Elect. Lett., vol. 7, pp. 285–286, 1971.CrossRefGoogle Scholar
  121. 121.
    P. Debye, Polar Molecules. New York: Dover, 1929.zbMATHGoogle Scholar
  122. 122.
    J. R. Wait, “Electromagnetic fields of a pulsed dipole in dissipative and dispersive media,” Radio Sci., vol. 5, pp. 733–735, 1970.ADSCrossRefGoogle Scholar
  123. 123.
    J. Jones, “On the propagation of a pulse through a dispersive medium,” Am. J. Physics, vol. 42, pp. 43–46, 1974.ADSCrossRefGoogle Scholar
  124. 124.
    D. G. Anderson and J. I. H. Askne, “Wave packets in strongly dispersive media,” Proc. IEEE, vol. 62, pp. 1518–1523, 1974.ADSCrossRefGoogle Scholar
  125. 125.
    D. Anderson, J. Askne, and M. Lisak, “Wave packets in an absorptive and strongly dispersive medium,” Phys. Rev. A, vol. 12, pp. 1546–1552, 1975.ADSCrossRefGoogle Scholar
  126. 126.
    L. A. Vainshtein, “Propagation of pulses,” Usp. Fiz. Nauk., vol. 118, pp. 339–367, 1976. [English translation: Sov. Phys.-Usp. vol.19, 189–205, (1976)].ADSCrossRefGoogle Scholar
  127. 127.
    S. A. Akhmanov, V. A. Yysloukh, and A. S. Chirkin, “Self-action of wave packets in a nonlinear medium and femtosecond laser pulse generation,” Usp. Fiz. Nauk., vol. 149, pp. 449–509, 1986. [English translation: Sov. Phys.-Usp. vol.29, 642–677 (1986)].Google Scholar
  128. 128.
    S. A. Akhamanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses. New York: American Institute of Physics, 1992.Google Scholar
  129. 129.
    P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics. Cambridge: Cambridge University Press, 1990.CrossRefGoogle Scholar
  130. 130.
    N. D. Hoc, I. M. Besieris, and M. E. Sockell, “Phase-space asymptotic analysis of wave propagation in homogeneous dispersive and dissipative media,” IEEE Trans. Antennas Prop., vol. 33, no. 11, pp. 1237–1248, 1985.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  131. 131.
    E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev., vol. 40, pp. 749–759, 1932.ADSzbMATHCrossRefGoogle Scholar
  132. 132.
    K. E. Oughstun, “Computational methods in ultrafast time-domain optics,” Computing in Science & Engineering, vol. 5, no. 6, pp. 22–32, 2003.CrossRefGoogle Scholar
  133. 133.
    R. L. Veghte and C. A. Balanis, “Dispersion of transient signals in microstrip transmission lines,” IEEE Trans. Antennas Prop., vol. 34, no. 12, pp. 1427–1436, 1986.Google Scholar
  134. 134.
    K. Moten, C. H. Durney, and T. G. Stockham, “Electromagnetic pulse propagation in dispersive planar dielectrics,” Bioelectromagnetics, vol. 10, pp. 35–49, 1989.CrossRefGoogle Scholar
  135. 135.
    R. Albanese, J. Penn, and R. Medina, “Short-rise-time microwave pulse propagation through dispersive biological media,” J. Opt. Soc. Am. A, vol. 6, pp. 1441–1446, 1989.ADSCrossRefGoogle Scholar
  136. 136.
    R. Albanese, J. Blaschak, R. Medina, and J. Penn, “Ultrashort electromagnetic signals: Biophysical questions, safety issues, and medical opportunities,” Aviation. Space and Environmental Medicine, vol. 65, no. 5, pp. 116–120, 1994.Google Scholar
  137. 137.
    T. Hosono, “Numerical inversion of Laplace transform,” Trans. IEE of Japan, vol. 99, no. 10, pp. 44–50, 1979.Google Scholar
  138. 138.
    T. Hosono, “Numerical inversion of Laplace transform and some applications to wave optics,” in Proceedings of the URSI Symposium on Electromagnetic Wave Theory, (München), pp. C1–C4, 1980.Google Scholar
  139. 139.
    T. Hosono, “Numerical inversion of Laplace transform and some applications to wave optics,” Radio Science, vol. 16, no. 6, pp. 1015–1019, 1981.ADSCrossRefGoogle Scholar
  140. 140.
    P. Wyns, D. P. Foty, and K. E. Oughstun, “Numerical analysis of the precursor fields in dispersive pulse propagation,” J. Opt. Soc. Am. A, vol. 6, no. 9, pp. 1421–1429, 1989.ADSCrossRefGoogle Scholar
  141. 141.
    H. Xiao and K. E. Oughstun, “Hybrid numerical-asymptotic code for dispersive pulse propagation calculations,” J. Opt. Soc. Am. A, vol. 15, no. 5, pp. 1256–1267, 1998.ADSCrossRefGoogle Scholar
  142. 142.
    S. L. Dvorak, D. G. Dudley, and R. W. Ziolkowski, “Propagation of UWB electromagnetic pulses through lossy plasmas,” in Ultra-Wideband, Short-Pulse Electromagnetics 3 (C. Baum, L. Carin, and A. P. Stone, eds.), pp. 247–254, New York: Plenum, 1997.CrossRefGoogle Scholar
  143. 143.
    H. Dubner and J. Abate, “Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform,” J. Assoc. Comput. Mach., vol. 15, pp. 115–123, 1968.MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    R. Barakat, “Ultrashort optical pulse propagation in a dispersive medium,” J. Opt. Soc. Am. B, vol. 3, no. 11, pp. 1602–1604, 1986.ADSCrossRefGoogle Scholar
  145. 145.
    T. Kashiwa and I. Fukai, “A treatment of the dispersive characteristics associated with electronic polarization,” Microwave Opt. Technol. Lett., vol. 3, pp. 203–205, 1990.CrossRefGoogle Scholar
  146. 146.
    R. Joseph, S. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett., vol. 16, pp. 1412–1414, 1991.ADSCrossRefGoogle Scholar
  147. 147.
    R. J. Luebbers and F. Hunsberger, “FD-TD for n-th order dispersive media,” IEEE Trans. Antennas Propag., vol. 40, pp. 1297–1301, 1992.ADSCrossRefGoogle Scholar
  148. 148.
    A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics. Piscataway, NJ: IEEE Press, 1998.zbMATHGoogle Scholar
  149. 149.
    L. A. Trefethen, “Group velocity in finite difference schemes,” SIAM Review, vol. 24, no. 2, pp. 113–136, 1982.MathSciNetzbMATHCrossRefGoogle Scholar
  150. 150.
    D. Gabor, “Theory of communication,” J. Inst. Electrical Eng., vol. 93, no. 26, pp. 429–457, 1946.Google Scholar
  151. 151.
    E. T. Whittaker, “On the functions which are represented by the expansions of the interpolation theory,” Proc. Roy. Soc. Edinburgh, Sect. A, vol. 35, p. 181, 1915.zbMATHCrossRefGoogle Scholar
  152. 152.
    C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 37, p. 10, 1949.MathSciNetCrossRefGoogle Scholar
  153. 153.
    L. M. Soroko, Holography and Coherent Optics. New York: Plenum, 1980. Ch. 5.Google Scholar
  154. 154.
    G. Kaiser, A Friendly Guide to Wavelets. Boston: Birkhäuser, 1994.zbMATHGoogle Scholar
  155. 155.
    R. S. Beezley and R. J. Krueger, “An electromagnetic inverse problem for dispersive media,” J. Math. Phys., vol. 26, no. 2, pp. 317–325, 1985.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  156. 156.
    G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. I. Scattering operators,” J. Math. Phys., vol. 27, no. 6, pp. 1667–1682, 1986.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  157. 157.
    G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. II. Simultaneous reconstruction of dissipation and phase velocity profiles,” J. Math. Phys., vol. 27, no. 6, pp. 1683–1693, 1986.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  158. 158.
    R. J. Krueger and R. L. Ochs, “A Green’s function approach to the determination of internal fields,” Wave Motion, vol. 11, pp. 525–543, 1989.MathSciNetzbMATHCrossRefGoogle Scholar
  159. 159.
    J. P. Corones, M. E. Davison, and R. J. Krueger, “Direct and inverse scattering in the time domain via invariant embedding equations,” J. Acoustic Soc. Am., vol. 74, pp. 1535–1541, 1983.ADSzbMATHCrossRefGoogle Scholar
  160. 160.
    G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. Part I. Scattering operators,” J. Math. Phys., vol. 27, pp. 1683–1693, 1986.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  161. 161.
    G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. Part II. Simultaneous reconstruction of dissipation and phase velocity profiles,” J. Math. Phys., vol. 27, pp. 1667–1682, 1986.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  162. 162.
    G. Kristensson and R. J. Krueger, “Direct and inverse scattering in the time domain for a dissipative wave equation. Part III. Scattering operators in the presence of a phase velocity mismatch,” J. Math. Phys., vol. 28, pp. 360–370, 1987.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  163. 163.
    E. Ammicht, J. P. Corones, and R. J. Krueger, “Direct and inverse scattering for viscoelestic media,” J. Acoustic Soc. Am., vol. 81, pp. 827–834, 1987.ADSCrossRefGoogle Scholar
  164. 164.
    A. Karlsson, H. Otterheim, and R. Stewart, “Transient wave propagation in composite media: Green’s function approach,” J. Opt. Soc. Am. A, vol. 10, no. 5, pp. 886–895, 1993.ADSCrossRefGoogle Scholar
  165. 165.
    L. Brillouin, “Propagation of electromagnetic waves in material media,” in Congrès International d’Electricité, vol. 2, pp. 739–788, Paris: Gauthier-Villars, 1933.Google Scholar
  166. 166.
    E. O. Schulz-DuBois, “Energy transport velocity of electromagnetic propagation in dispersive media,” Proc. IEEE, vol. 57, pp. 1748–1757, 1969.CrossRefGoogle Scholar
  167. 167.
    J. Askne and B. Lind, “Energy of electromagnetic waves in the presence of absorption and dispersion,” Phys. Rev. A, vol. 2, no. 6, pp. 2335–2340, 1970.ADSCrossRefGoogle Scholar
  168. 168.
    R. Loudon, “The propagation of electromagnetic energy through an absorbing dielectric,” Phys. A, vol. 3, pp. 233–245, 1970.ADSCrossRefGoogle Scholar
  169. 169.
    D. Anderson and J. Askne, “Energy relations for waves in strongly dispersive media,” Proc. IEEE Lett., vol. 60, pp. 901–902, 1972.CrossRefGoogle Scholar
  170. 170.
    D. Censor and J. J. Brandstatter, “Conservation and balance equations for waves in dissipative media,” Appl. Sci. Res., vol. 30, pp. 291–303, 1975.MathSciNetzbMATHCrossRefGoogle Scholar
  171. 171.
    K. E. Oughstun and S. Shen, “Velocity of energy transport for a time-harmonic field in a multiple-resonance Lorentz medium,” J. Opt. Soc. Am. B, vol. 5, no. 11, pp. 2395–2398, 1988.ADSCrossRefGoogle Scholar
  172. 172.
    Y. S. Barash and V. L. Ginzburg, “Expressions for the energy density and evolved heat in the electrodynamics of a dispersive and absorptive medium,” Usp. Fiz. Nauk., vol. 118, pp. 523–530, 1976. [English translation: Sov. Phys.-Usp. vol. 19, 163–270 (1976)].Google Scholar
  173. 173.
    C. Broadbent, G. Hovhannisyan, M. Clayton, J. Peatross, and S. A. Glasgow, “Reversible and irreversible processes in dispersive/dissipative optical media: Electro-magnetic free energy and heat production,” in Ultra-Wideband, Short-Pulse Electromagnetics 6 (E. L. Mokole, M. Kragalott, and K. R. Gerlach, eds.), pp. 131–142, New York: Kluwer Academic, 2003.Google Scholar
  174. 174.
    S. Glasgow and M. Ware, “Real-time dissipation of optical pulses in passive dielectrics,” Phys. Rev. A, vol. 80, pp. 043817–043827, 2009.ADSCrossRefGoogle Scholar
  175. 175.
    S. Glasgow, J. Corson, and C. Verhaaren, “Dispersive dielectrics and time reversal: Free energies, orthogonal spectra, and parity in dissipative media,” Phys. Rev. E, vol. 82, p. 011115, 2010.ADSMathSciNetCrossRefGoogle Scholar
  176. 176.
    R. L. Smith, “The velocities of light,” Am. J. Phys., vol. 38, no. 8, pp. 978–984, 1970.ADSCrossRefGoogle Scholar
  177. 177.
    D. B. Trizna and T. A. Weber, “Time delays of electromagnetic pulses due to molecular resonances in the atmosphere and the interstellar medium,” Astrophysical J., vol. 159, no. 1, pp. 309–317, 1970.ADSCrossRefGoogle Scholar
  178. 178.
    D. B. Trizna and T. A. Weber, “Brillouin revisited: Signal velocity definition for pulse propagation in a medium with resonant anomalous dispersion,” Radio Science, vol. 17, no. 5, pp. 1169–1180, 1982.ADSCrossRefGoogle Scholar
  179. 179.
    S. C. Bloch, “Eighth velocity of light,” Am. J. Phys., vol. 45, no. 6, pp. 538–549, 1977.ADSCrossRefGoogle Scholar
  180. 180.
    N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, “Propagation velocity of an intense light pulse in a medium with inverted population,” Doklady Akademii Nauk SSSR, vol. 165, pp. 58–60, 1965. [English translation: Sov. Phys.-Doklady vol. 10, 1039–1040 (1966)].Google Scholar
  181. 181.
    F. R. Faxvog, C. N. Y. Chow, T. Bieber, and J. A. Carruthers, “Measured pulse velocity greater than c in a neon absorption cell,” Appl. Phys. Lett., vol. 17, pp. 192–193, 1970.ADSCrossRefGoogle Scholar
  182. 182.
    S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett., vol. 48, pp. 738–741, 1982.ADSCrossRefGoogle Scholar
  183. 183.
    A. Katz and R. R. Alfano, “Pulse propagation in an absorbing medium,” Phys. Rev. Lett., vol. 49, p. 1292, 1982.ADSCrossRefGoogle Scholar
  184. 184.
    C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A, vol. 1, pp. 305–313, 1970.ADSCrossRefGoogle Scholar
  185. 185.
    M. Tanaka, M. Fujiwara, and H. Ikegami, “Propagation of a Gaussian wave packet in an absorbing medium,” Phys. Rev. A, vol. 34, pp. 4851–4858, 1986.ADSCrossRefGoogle Scholar
  186. 186.
    G. C. Sherman and K. E. Oughstun, “Description of pulse dynamics in Lorentz media in terms of the energy velocity and attenuation of time-harmonic waves,” Phys. Rev. Lett., vol. 47, pp. 1451–1454, 1981.ADSCrossRefGoogle Scholar
  187. 187.
    G. C. Sherman and K. E. Oughstun, “Energy velocity description of pulse propagation in absorbing, dispersive dielectrics,” J. Opt. Soc. Am. B, vol. 12, pp. 229–247, 1995.ADSCrossRefGoogle Scholar
  188. 188.
    R. Safian, C. D. Sarris, and M. Mojahedi, “Joint time-frequency and finite-difference time-domain analysis of precursor fields in dispersive media,” Phys. Rev. E, vol. 73, pp. 066602–1–9, 2006.Google Scholar
  189. 189.
    R. Uitham and B. J. Hoenders, “The electromagnetic Brillouin precursor in one-dimensional photonic crystals,” Opt. Comm., vol. 281, pp. 5910–5918, 2008.ADSCrossRefGoogle Scholar
  190. 190.
    V. A. Vasilev, M. Y. Kelbert, I. A. Sazonov, and I. A. Chaban, “Propagation of ultrashort light pulses in a resonant absorbing medium,” Opt. Spektrosk., vol. 64, no. 4, pp. 862–868, 1988.Google Scholar
  191. 191.
    N. A. Cartwright and K. E. Oughstun, “Precursors and dispersive pulse dynamics, a century after the Sommerfeld-Brillouin theory: the original theory,” in Progress in Optics (E. Wolf, ed.), vol. 59, pp. 209–265, Amsterdam, The Netherlands: Elsevier, 2014.Google Scholar
  192. 192.
    N. A. Cartwright and K. E. Oughstun, “Precursors and dispersive pulse dynamics, a century after the Sommerfeld-Brillouin theory: the modern asymptotic theory,” in Progress in Optics (E. Wolf, ed.), vol. 60, pp. 263–344, Amsterdam, The Netherlands: Elsevier, 2015.Google Scholar
  193. 193.
    R. Safian, M. Mojahedi, and C. D. Sarris, “Asymptotic description of wave propagation in an active Lorentzian medium,” Phys. Rev. E, vol. 75, pp. 066611–1–8, 2007.Google Scholar
  194. 194.
    S. Dvorak and D. Dudley, “Propagation of ultra-wide-band electromagnetic pulses through dispersive media,” IEEE Trans. Elec. Comp., vol. 37, no. 2, pp. 192–200, 1995.Google Scholar
  195. 195.
    L. Gagnon, “Similarity properties and nonlinear effects on optical precursors,” Phys. Lett. A, vol. 148, no. 8, pp. 452–456, 1990.ADSMathSciNetCrossRefGoogle Scholar
  196. 196.
    J. L. Birman and M. J. Frankel, “Predicted new electromagnetic precursors and altered signal velocity in dispersive media,” Opt. Comm., vol. 13, no. 3, pp. 303–306, 1975.ADSCrossRefGoogle Scholar
  197. 197.
    M. J. Frankel and J. L. Birman, “Transient optical response of a spatially dispersive medium,” Phys. Rev. A, vol. 15, no. 5, pp. 2000–2008, 1977.ADSCrossRefGoogle Scholar
  198. 198.
    E. M. Belenov and A. V. Nazarkin, “Transient diffraction and precursorlike effects in vacuum,” J. Opt. Soc. Am. A, vol. 11, no. 1, pp. 168–172, 1994.ADSCrossRefGoogle Scholar
  199. 199.
    J. A. Solhaug, J. J. Stamnes, and K. E. Oughstun, “Diffraction of electromagnetic pulses in a single-resonance Lorentz model dielectric,” Pure Appl. Opt., vol. 7, no. 5, pp. 1079–1101, 1998.ADSCrossRefGoogle Scholar
  200. 200.
    L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cambridge: Cambridge University Press, 1995. Ch. 3.Google Scholar
  201. 201.
    K. E. Oughstun, N. A. Cartwright, D. J. Gauthier, and H. Jeong, “Optical precursors in the singular and weak dispersion limits,” J. Opt. Soc. Am. B, vol. 27, no. 8, pp. 1664–1670, 2010.ADSCrossRefGoogle Scholar
  202. 202.
    T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett., vol. 78, no. 17, pp. 3282–3285, 1997.ADSCrossRefGoogle Scholar
  203. 203.
    A. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Measurement of the single-photon tunneling time,” Phys. Rev. Lett., vol. 71, no. 5, pp. 708–711, 1993.ADSCrossRefGoogle Scholar
  204. 204.
    R. Landauer, “Light faster than light,” Nature, vol. 365, pp. 692–693, 1993.ADSCrossRefGoogle Scholar
  205. 205.
    G. Diener, “Superluminal group velocities and information transfer,” Phys. Lett. A, vol. 223, pp. 327–331, 1996.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    P. W. Milonni, K. Furuya, and R. Y. Chiao, “Quantum theory of superluminal pulse propagation,” Optics Express, vol. 8, no. 2, pp. 59–65, 2001.ADSCrossRefGoogle Scholar
  207. 207.
    A. Dogariu, A. Kuzmich, H. Cao, and L. J. Wang, “Superluminal light pulse propagation via rephasing in a transparent anomalously dispersive medium,” Optics Express, vol. 8, no. 6, pp. 344–350, 2001.ADSCrossRefGoogle Scholar
  208. 208.
    A. Kuzmich, A. Dogariu, L. J. Wang, P. W. Milonni, and R. Y. Chiao, “Signal velocity, causality, and quantum noise in superluminal light pulse propagation,” Phys. Rev. Lett., vol. 86, no. 18, pp. 3925–3929, 2001.ADSCrossRefGoogle Scholar
  209. 209.
    G. Nimtz and A. Haibel, “Basics of superluminal signals,” Ann. Phys. (Leipzig), vol. 11, no. 2, pp. 163–171, 2002.ADSCrossRefGoogle Scholar
  210. 210.
    H. Winful, “Nature of “superluminal” barrier tunneling,” Phys. Rev. Lett., vol. 90, no. 2, pp. 239011–239014, 2003.CrossRefGoogle Scholar
  211. 211.
    K. E. Oughstun, “Asymptotic description of pulse ultrawideband electromagnetic beam field propagation in dispersive, attenuative media,” J. Opt. Soc. Am. A, vol. 18, no. 7, pp. 1704–1713, 2001.ADSCrossRefGoogle Scholar
  212. 212.
    K. E. Oughstun, “Asymptotic description of ultrawideband, ultrashort pulsed electromagnetic beam field propagation in a dispersive, attenuative medium,” in Ultra-Wideband, Short-Pulse Electromagnetics 5 (P. D. Smith and S. R. Cloude, eds.), pp. 687–696, New York: Kluwer Academic, 2002.Google Scholar
  213. 213.
    D. Anderson, J. Askne, and M. Lisak, “The velocity of wave packets in dispersive and slightly absorptive media,” Proc. IEEE Lett., vol. 63, no. 4, pp. 715–717, 1975.ADSCrossRefGoogle Scholar
  214. 214.
    M. Lisak, “Energy expressions and energy velocity for wave packets in an absorptive and dispersive medium,” J. Phys. A: Math. Gen., vol. 9, pp. 1145–1158, 1976.ADSCrossRefGoogle Scholar
  215. 215.
    J. Peatross, S. A. Glasgow, and M. Ware, “Average energy flow of optical pulses in dispersive media,” Phys. Rev. Lett., vol. 84, no. 11, pp. 2370–2373, 2000.ADSCrossRefGoogle Scholar
  216. 216.
    M. Ware, S. A. Glasgow, and J. Peatross, “Role of group velocity in tracking field energy in linear dielectrics,” Opt. Exp., vol. 9, no. 10, pp. 506–518, 2001.ADSCrossRefGoogle Scholar
  217. 217.
    K. E. Oughstun and N. A. Cartwright, “Dispersive pulse dynamics and associated pulse velocity measures,” Pure Appl. Opt., vol. 4, no. 5, pp. S125–S134, 2002.CrossRefGoogle Scholar
  218. 218.
    N. A. Cartwright and K. E. Oughstun, “Pulse centroid velocity of the Poynting vector,” J. Opt. Soc. Am. A, vol. 21, no. 3, pp. 439–450, 2004.ADSMathSciNetCrossRefGoogle Scholar
  219. 219.
    J. Aaviksoo, J. Lippmaa, and J. Kuhl, “Observability of optical precursors,” J. Opt. Soc. Am. B, vol. 5, no. 8, pp. 1631–1635, 1988.ADSCrossRefGoogle Scholar
  220. 220.
    J. Aaviksoo, J. Kuhl, and K. Ploog, “Observation of optical precursors at pulse propagation in GaAs,” Phys. Rev. A, vol. 44, no. 9, pp. 5353–5356, 1991.ADSCrossRefGoogle Scholar
  221. 221.
    S.-H. Choi and U. Österberg, “Observation of optical precursors in water,” Phys. Rev. Lett., vol. 92, no. 19, pp. 1939031–1939033, 2004.CrossRefGoogle Scholar
  222. 222.
    H. Jeong, A. M. C. Dawes, and D. J. Gauthier, “Direct observation of optical precursors in a region of anomalous dispersion,” Phys. Rev. Lett., vol. 96, no. 14, p. 143901, 2006.Google Scholar
  223. 223.
    S. Du, C. Belthangady, P. Kolchin, G. Yin, and S. Harris, “Observation of optical precursors at the biphoton level,” Opt. Lett., vol. 33, no. 18, pp. 2149–2151, 2008.ADSCrossRefGoogle Scholar
  224. 224.
    M. Pieraccini, A. Bicci, D. Mecatti, G. Macaluso, and C. Atzeni, “Propagation of large bandwidth microwave signals in water,” IEEE Trans. Ant. Prop., vol. 57, no. 11, pp. 3612–3618, 2009.ADSCrossRefGoogle Scholar
  225. 225.
    A. V. Alejos, M. Dawood, and L. Medina, “Experimental dynamical evolution of the Brillouin precursor for broadband wireless communication through vegetation,” in Progress in Electromagnetics Research (J. A. Kong, ed.), vol. 111, pp. 291–309, Cambridge, MA: EMW Publishing, 2011.CrossRefGoogle Scholar
  226. 226.
    H. Mohammed, M. Dawood, and A. V. Alejos, “Experimental detection and characterization of Brillouin precursor through loamy soil at microwave frequencies,” IEEE Trans. Geoscience and Remote Sensing, vol. 50, no. 2, pp. 436–445, 2012.ADSCrossRefGoogle Scholar
  227. 227.
    D. C. Stoudt, F. E. Peterkin, and B. J. Hankla, “Transient RF and microwave pulse propagation in a Debye medium (water),” Interaction Note 622, Dahlgren Division, Naval Surface Warfare Center, Directed Technology Office, Electromagnetic and Solid State Technologies Division, Code B20/Bldg 1470, Dahlgren, VA, 4 July 2011.Google Scholar
  228. 228.
    K. E. Oughstun, “Dynamical evolution of the Brillouin precursor in Rocard-Powles-Debye model dielectrics,” IEEE Trans. Ant. Prop., vol. 53, no. 5, pp. 1582–1590, 2005.ADSMathSciNetzbMATHCrossRefGoogle Scholar
  229. 229.
    D. D. Stancil, “Magnetostatic wave precursors in thin ferrite films,” J. Appl. Phys., vol. 53, no. 3, pp. 2658–2660, 1982.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kurt E. Oughstun
    • 1
  1. 1.College of Engineering and Mathematical Sciences, University of VermontBurlingtonUSA

Personalised recommendations