Advertisement

Biomarkers, Targeted Therapies, Biologics, and Bronchial Thermoplasty

  • Arjun Mohan
  • Jon Grace
  • Anne Mainardi
  • Geoffrey Chupp
  • Njira LugogoEmail author
Chapter
  • 444 Downloads
Part of the Respiratory Medicine book series (RM)

Abstract

Severe asthma is a complex and heterogeneous inflammatory disease that encompasses multiple phenotypes that are being targeted with an increasing number of biologic therapies. Our understanding of the mechanisms that drive severe asthma has been rapidly evolving over the last decade, revealing multiple pathologic mechanisms that can result in similar asthma symptoms and disease activity. Concurrently, there has been a dramatic change in the approach to asthma therapies mediated by the availability of new targeted therapies for severe asthma. There are now five biologic therapies and bronchial thermoplasty approved by the Food and Drug Administration (FDA) that are targeted at reducing exacerbations and oral corticosteroid (OCS) exposure and improving asthma control. Identification of responders to these advanced therapies currently relies on surrogate markers of inflammation. These surrogate markers (biomarkers) can be used as phenotyping tools, predictive markers of response, and prognostic markers. Although our understanding of how to use biomarkers to select patients for these therapies has evolved, many limitations remain, and more work needs to be done to improve the accuracy of these markers. Personalized medicine is now a realizable dream when managing severe asthma but faced with increasingly complex decision making surrounding which therapies should be given to a particular patient. It is imperative that we continue to work to improve the precision of our tools if we are ever to fully realize the goal of providing precision medicine to patients that suffer from asthma. In this review, we will discuss the current biomarkers used to phenotype patients with asthma, how they are currently used, their limitations, and future biomarkers.

Keywords

Severe asthma Biomarkers Phenotyping Biologic therapies Bronchial thermoplasty 

References

  1. 1.
    Fricker M, Heaney LG, Upham JW. Can biomarkers help us hit targets in difficult-to-treat asthma? Respirology. 2017;22(3):430–42.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Hanania NA, Korenblat P, Chapman KR, Bateman ED, Kopecky P, Paggiaro P, et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir Med. 2016;4(10):781–96.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Brightling CE, Chanez P, Leigh R, O’Byrne PM, Korn S, She D, et al. Efficacy and safety of tralokinumab in patients with severe uncontrolled asthma: a randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir Med. 2015;3(9):692–701.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–23.Google Scholar
  5. 5.
    Haldar P, Pavord ID, Shaw DE, Berry MA, Thomas M, Brightling CE, et al. Cluster analysis and clinical asthma phenotypes. Am J Respir Crit Care Med. 2008;178(3):218–24.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pandey G, Pandey OP, Rogers AJ, Ahsen ME, Hoffman GE, Raby BA, et al. A nasal brush-based classifier of asthma identified by machine learning analysis of nasal RNA sequence data. Sci Rep. 2018;8(1):8826.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yan X, Chu JH, Gomez J, Koenigs M, Holm C, He X, et al. Noninvasive analysis of the sputum transcriptome discriminates clinical phenotypes of asthma. Am J Respir Crit Care Med. 2015;191(10):1116–25.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    de Groot JC, Ten Brinke A, Bel EH. Management of the patient with eosinophilic asthma: a new era begins. ERJ Open Res. 2015;1(1):00024-2015.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology. 2006;11(1):54–61.CrossRefGoogle Scholar
  10. 10.
    Tran TN, Zeiger RS, Peters SP, Colice G, Newbold P, Goldman M, et al. Overlap of atopic, eosinophilic, and TH2-high asthma phenotypes in a general population with current asthma. Ann Allergy Asthma Immunol. 2016;116(1):37–42.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Jacobsen EA, Taranova AG, Lee NA, Lee JJ. Eosinophils: singularly destructive effector cells or purveyors of immunoregulation? J Allergy Clin Immunol. 2007;119(6):1313–20.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Miranda C, Busacker A, Balzar S, Trudeau J, Wenzel SE. Distinguishing severe asthma phenotypes: role of age at onset and eosinophilic inflammation. J Allergy Clin Immunol. 2004;113(1):101–8.CrossRefGoogle Scholar
  13. 13.
    Fabbri LM, Romagnoli M, Corbetta L, Casoni G, Busljetic K, Turato G, et al. Differences in airway inflammation in patients with fixed airflow obstruction due to asthma or chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2003;167(3):418–24.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Schleich FN, Louis R. Importance of concomitant local and systemic eosinophilia in uncontrolled asthma. Eur Respir J. 2014;44(4):1098–9.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Jayaram L, Pizzichini MM, Cook RJ, Boulet LP, Lemiere C, Pizzichini E, et al. Determining asthma treatment by monitoring sputum cell counts: effect on exacerbations. Eur Respir J. 2006;27(3):483–94.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet. 2002;360(9347):1715–21.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Flood-Page P, Swenson C, Faiferman I, Matthews J, Williams M, Brannick L, et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am J Respir Crit Care Med. 2007;176(11):1062–71.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Leckie MJ, ten Brinke A, Khan J, Diamant Z, O’Connor BJ, Walls CM, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356(9248):2144–8.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kips JC, O’Connor BJ, Langley SJ, Woodcock A, Kerstjens HA, Postma DS, et al. Effect of SCH55700, a humanized anti-human interleukin-5 antibody, in severe persistent asthma: a pilot study. Am J Respir Crit Care Med. 2003;167(12):1655–9.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–9.CrossRefGoogle Scholar
  21. 21.
    Castro M, Mathur S, Hargreave F, Boulet LP, Xie F, Young J, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am J Respir Crit Care Med. 2011;184(10):1125–32.PubMedCrossRefGoogle Scholar
  22. 22.
    Pizzichini E, Pizzichini MM, Efthimiadis A, Dolovich J, Hargreave FE. Measuring airway inflammation in asthma: eosinophils and eosinophilic cationic protein in induced sputum compared with peripheral blood. J Allergy Clin Immunol. 1997;99(4):539–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Malinovschi A, Fonseca JA, Jacinto T, Alving K, Janson C. Exhaled nitric oxide levels and blood eosinophil counts independently associate with wheeze and asthma events in National Health and Nutrition Examination Survey subjects. J Allergy Clin Immunol. 2013;132(4):821–7 e1-5.PubMedCrossRefGoogle Scholar
  24. 24.
    Wagener AH, de Nijs SB, Lutter R, Sousa AR, Weersink EJ, Bel EH, et al. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax. 2015;70(2):115–20.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Schleich F, Brusselle G, Louis R, Vandenplas O, Michils A, Pilette C, et al. Heterogeneity of phenotypes in severe asthmatics. The Belgian Severe Asthma Registry (BSAR). Respir Med. 2014;108(12):1723–32.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Nadif R, Siroux V, Oryszczyn MP, Ravault C, Pison C, Pin I, et al. Heterogeneity of asthma according to blood inflammatory patterns. Thorax. 2009;64(5):374–80.PubMedCrossRefGoogle Scholar
  27. 27.
    Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Burrows B, Martinez FD, Cline MG, Lebowitz MD. The relationship between parental and children’s serum IgE and asthma. Am J Respir Crit Care Med. 1995;152(5 Pt 1):1497–500.PubMedCrossRefGoogle Scholar
  29. 29.
    Gerald JK, Gerald LB, Vasquez MM, Morgan WJ, Boehmer SJ, Lemanske RF Jr, et al. Markers of differential response to inhaled corticosteroid treatment among children with mild persistent asthma. J Allergy Clin Immunol Pract. 2015;3(4):540–6 e3.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Simpson A, Soderstrom L, Ahlstedt S, Murray CS, Woodcock A, Custovic A. IgE antibody quantification and the probability of wheeze in preschool children. J Allergy Clin Immunol. 2005;116(4):744–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG, et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol. 2012;129(3 Suppl):S9–23.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bousquet J, Wenzel S, Holgate S, Lumry W, Freeman P, Fox H. Predicting response to omalizumab, an anti-IgE antibody, in patients with allergic asthma. Chest. 2004;125(4):1378–86.PubMedCrossRefGoogle Scholar
  33. 33.
    Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, et al. The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci. 2014;71(7):1279–88.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Gordon ED, Sidhu SS, Wang ZE, Woodruff PG, Yuan S, Solon MC, et al. A protective role for periostin and TGF-beta in IgE-mediated allergy and airway hyperresponsiveness. Clin Exp Allergy. 2012;42(1):144–55.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bentley JK, Chen Q, Hong JY, Popova AP, Lei J, Moore BB, et al. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2014;134(6):1433–42.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Li W, Gao P, Zhi Y, Xu W, Wu Y, Yin J, et al. Periostin: its role in asthma and its potential as a diagnostic or therapeutic target. Respir Res. 2015;16:57.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wenzel S. Severe/fatal asthma. Chest. 2003;123(3 Suppl):405S–10S.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Corren J, Lemanske RF, Hanania NA, Korenblat PE, Parsey MV, Arron JR, et al. Lebrikizumab treatment in adults with asthma. N Engl J Med. 2011;365(12):1088–98.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Hanania NA, Wenzel S, Rosen K, Hsieh HJ, Mosesova S, Choy DF, et al. Exploring the effects of omalizumab in allergic asthma: an analysis of biomarkers in the EXTRA study. Am J Respir Crit Care Med. 2013;187(8):804–11.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Izuhara K, Ohta S, Ono J. Using periostin as a biomarker in the treatment of asthma. Allergy, Asthma Immunol Res. 2016;8(6):491–8.CrossRefGoogle Scholar
  41. 41.
    Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991;181(2):852–7.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    American Thoracic S, European Respiratory S. ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med. 2005;171(8):912–30.CrossRefGoogle Scholar
  43. 43.
    Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184(5):602–15.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Gemicioglu B, Musellim B, Dogan I, Guven K. Fractional exhaled nitric oxide (FeNo) in different asthma phenotypes. Allergy Rhinol (Providence). 2014;5(3):157–61.CrossRefGoogle Scholar
  45. 45.
    Ricciardolo FL, Sorbello V, Ciprandi G. FeNO as biomarker for asthma phenotyping and management. Allergy Asthma Proc. 2015;36(1):e1–8.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Westerhof GA, Korevaar DA, Amelink M, de Nijs SB, de Groot JC, Wang J, et al. Biomarkers to identify sputum eosinophilia in different adult asthma phenotypes. Eur Respir J. 2015;46(3):688–96.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486–96.CrossRefGoogle Scholar
  48. 48.
    Arnold RJ, Massanari M, Lee TA, Brooks E. A review of the utility and cost effectiveness of monitoring fractional exhaled nitric oxide (FeNO) in asthma management. Manag Care. 2018;27(7):34–41.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Fahy JV. Type 2 inflammation in asthma--present in most, absent in many. Nat Rev Immunol. 2015;15(1):57–65.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368(9537):804–13.CrossRefGoogle Scholar
  51. 51.
    Chang HS, Lee TH, Jun JA, Baek AR, Park JS, Koo SM, et al. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev Respir Med. 2017;11(1):29–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Robinson D, Humbert M, Buhl R, Cruz AA, Inoue H, Korom S, et al. Revisiting Type 2-high and Type 2-low airway inflammation in asthma: current knowledge and therapeutic implications. Clin Exp Allergy. 2017;47(2):161–75.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Amin K, Ludviksdottir D, Janson C, Nettelbladt O, Bjornsson E, Roomans GM, et al. Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group. Am J Respir Crit Care Med. 2000;162(6):2295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Baos S, Calzada D, Cremades-Jimeno L, Sastre J, Picado C, Quiralte J, et al. Nonallergic asthma and its severity: biomarkers for its discrimination in peripheral samples. Front Immunol. 2018;9:1416.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Grayson MH, Feldman S, Prince BT, Patel PJ, Matsui EC, Apter AJ. Advances in asthma in 2017: mechanism, biologics, and genetics. J Allergy Clin Immunol. 2018;142:1423–36.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Silverpil E, Linden A. IL-17 in human asthma. Expert Rev Respir Med. 2012;6(2):173–86.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Poynter ME, Irvin CG. Interleukin-6 as a biomarker for asthma: hype or is there something else? Eur Respir J. 2016;48(4):979–81.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hawkins GA, Robinson MB, Hastie AT, Li X, Li H, Moore WC, et al. The IL6R variation Asp(358)Ala is a potential modifier of lung function in subjects with asthma. J Allergy Clin Immunol. 2012;130(2):510–5 e1.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Peters MC, McGrath KW, Hawkins GA, Hastie AT, Levy BD, Israel E, et al. Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med. 2016;4(7):574–84.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Ullah MA, Revez JA, Loh Z, Simpson J, Zhang V, Bain L, et al. Allergen-induced IL-6 trans-signaling activates gammadelta T cells to promote type 2 and type 17 airway inflammation. J Allergy Clin Immunol. 2015;136(4):1065–73.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chu DK, Al-Garawi A, Llop-Guevara A, Pillai RA, Radford K, Shen P, et al. Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin Immunol. 2015;11(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Rincon M, Irvin CG. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci. 2012;8(9):1281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Huizinga TW, Fleischmann RM, Jasson M, Radin AR, van Adelsberg J, Fiore S, et al. Sarilumab, a fully human monoclonal antibody against IL-6Ralpha in patients with rheumatoid arthritis and an inadequate response to methotrexate: efficacy and safety results from the randomised SARIL-RA-MOBILITY Part A trial. Ann Rheum Dis. 2014;73(9):1626–34.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Norman DJ. An overview of the use of the monoclonal antibody OKT3 in renal transplantation. Transplant Proc. 1988;20(6):1248–52.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Katial RK, Bensch GW, Busse WW, Chipps BE, Denson JL, Gerber AN, et al. Changing paradigms in the treatment of severe asthma: the role of biologic therapies. J Allergy Clin Immunol Pract. 2017;5(2S):S1–S14.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Bel EH, Sousa A, Fleming L, Bush A, Chung KF, Versnel J, et al. Diagnosis and definition of severe refractory asthma: an international consensus statement from the Innovative Medicine Initiative (IMI). Thorax. 2011;66(10):910–7.CrossRefGoogle Scholar
  67. 67.
    Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.CrossRefGoogle Scholar
  68. 68.
    Hekking PP, Wener RR, Amelink M, Zwinderman AH, Bouvy ML, Bel EH. The prevalence of severe refractory asthma. J Allergy Clin Immunol. 2015;135(4):896–902.CrossRefGoogle Scholar
  69. 69.
    Chang TW. The pharmacological basis of anti-IgE therapy. Nat Biotechnol. 2000;18(2):157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Milgrom H, Fick RB Jr, Su JQ, Reimann JD, Bush RK, Watrous ML, et al. Treatment of allergic asthma with monoclonal anti-IgE antibody. rhuMAb-E25 Study Group. N Engl J Med. 1999;341(26):1966–73.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lin H, Boesel KM, Griffith DT, Prussin C, Foster B, Romero FA, et al. Omalizumab rapidly decreases nasal allergic response and FcepsilonRI on basophils. J Allergy Clin Immunol. 2004;113(2):297–302.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Catley MC, Coote J, Bari M, Tomlinson KL. Monoclonal antibodies for the treatment of asthma. Pharmacol Ther. 2011;132(3):333–51.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Heusser C, Jardieu P. Therapeutic potential of anti-IgE antibodies. Curr Opin Immunol. 1997;9(6):805–13.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Owen CE. Immunoglobulin E: role in asthma and allergic disease: lessons from the clinic. Pharmacol Ther. 2007;113(1):121–33.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Boulet LP, Chapman KR, Cote J, Kalra S, Bhagat R, Swystun VA, et al. Inhibitory effects of an anti-IgE antibody E25 on allergen-induced early asthmatic response. Am J Respir Crit Care Med. 1997;155(6):1835–40.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Fahy JV, Fleming HE, Wong HH, Liu JT, Su JQ, Reimann J, et al. The effect of an anti-IgE monoclonal antibody on the early- and late-phase responses to allergen inhalation in asthmatic subjects. Am J Respir Crit Care Med. 1997;155(6):1828–34.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Busse W, Corren J, Lanier BQ, McAlary M, Fowler-Taylor A, Cioppa GD, et al. Omalizumab, anti-IgE recombinant humanized monoclonal antibody, for the treatment of severe allergic asthma. J Allergy Clin Immunol. 2001;108(2):184–90.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Soler M, Matz J, Townley R, Buhl R, O’Brien J, Fox H, et al. The anti-IgE antibody omalizumab reduces exacerbations and steroid requirement in allergic asthmatics. Eur Respir J. 2001;18(2):254–61.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hanania NA, Alpan O, Hamilos DL, Condemi JJ, Reyes-Rivera I, Zhu J, et al. Omalizumab in severe allergic asthma inadequately controlled with standard therapy: a randomized trial. Ann Intern Med. 2011;154(9):573–82.CrossRefGoogle Scholar
  80. 80.
    Deschildre A, Marguet C, Salleron J, Pin I, Rittie JL, Derelle J, et al. Add-on omalizumab in children with severe allergic asthma: a 1-year real life survey. Eur Respir J. 2013;42(5):1224–33.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Deschildre A, Marguet C, Langlois C, Pin I, Rittie JL, Derelle J, et al. Real-life long-term omalizumab therapy in children with severe allergic asthma. Eur Respir J. 2015;46(3):856–9.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Rodrigo GJ, Neffen H, Castro-Rodriguez JA. Efficacy and safety of subcutaneous omalizumab vs placebo as add-on therapy to corticosteroids for children and adults with asthma: a systematic review. Chest. 2011;139(1):28–35.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Bousquet J, Cabrera P, Berkman N, Buhl R, Holgate S, Wenzel S, et al. The effect of treatment with omalizumab, an anti-IgE antibody, on asthma exacerbations and emergency medical visits in patients with severe persistent asthma. Allergy. 2005;60(3):302–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Singh J, Kraft M. Anti-IgE and other antibody targets in asthma. Handb Exp Pharmacol. 2008;181:257–88.CrossRefGoogle Scholar
  85. 85.
    Ozgur ES, Ozge C, Ilvan A, Nayci SA. Assessment of long-term omalizumab treatment in patients with severe allergic asthma long-term omalizumab treatment in severe asthma. J Asthma. 2013;50(6):687–94.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Corren J, Casale TB, Lanier B, Buhl R, Holgate S, Jimenez P. Safety and tolerability of omalizumab. Clin Exp Allergy. 2009;39(6):788–97.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Busse W, Buhl R, Fernandez Vidaurre C, Blogg M, Zhu J, Eisner MD, et al. Omalizumab and the risk of malignancy: results from a pooled analysis. J Allergy Clin Immunol. 2012;129(4):983–9 e6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Long A, Rahmaoui A, Rothman KJ, Guinan E, Eisner M, Bradley MS, et al. Incidence of malignancy in patients with moderate-to-severe asthma treated with or without omalizumab. J Allergy Clin Immunol. 2014;134(3):560–7 e4.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Harris JM, Maciuca R, Bradley MS, Cabanski CR, Scheerens H, Lim J, et al. A randomized trial of the efficacy and safety of quilizumab in adults with inadequately controlled allergic asthma. Respir Res. 2016;17:29.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Rosenwasser LJ, Busse WW, Lizambri RG, Olejnik TA, Totoritis MC. Allergic asthma and an anti-CD23 mAb (IDEC-152): results of a phase I, single-dose, dose-escalating clinical trial. J Allergy Clin Immunol. 2003;112(3):563–70.PubMedCrossRefGoogle Scholar
  91. 91.
    Putnam WS, Li J, Haggstrom J, Ng C, Kadkhodayan-Fischer S, Cheu M, et al. Use of quantitative pharmacology in the development of HAE1, a high-affinity anti-IgE monoclonal antibody. AAPS J. 2008;10(2):425–30.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Racine-Poon A, Botta L, Chang TW, Davis FM, Gygax D, Liou RS, et al. Efficacy, pharmacodynamics, and pharmacokinetics of CGP 51901, an anti-immunoglobulin E chimeric monoclonal antibody, in patients with seasonal allergic rhinitis. Clin Pharmacol Ther. 1997;62(6):675–90.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Corne J, Djukanovic R, Thomas L, Warner J, Botta L, Grandordy B, et al. The effect of intravenous administration of a chimeric anti-IgE antibody on serum IgE levels in atopic subjects: efficacy, safety, and pharmacokinetics. J Clin Invest. 1997;99(5):879–87.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Kubo M. Innate and adaptive type 2 immunity in lung allergic inflammation. Immunol Rev. 2017;278(1):162–72.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Farne HA, Wilson A, Powell C, Bax L, Milan SJ. Anti-IL5 therapies for asthma. Cochrane Database Syst Rev. 2017;(9):CD010834.Google Scholar
  96. 96.
    Chupp GL, Bradford ES, Albers FC, Bratton DJ, Wang-Jairaj J, Nelsen LM, et al. Efficacy of mepolizumab add-on therapy on health-related quality of life and markers of asthma control in severe eosinophilic asthma (MUSCA): a randomised, double-blind, placebo-controlled, parallel-group, multicentre, phase 3b trial. Lancet Respir Med. 2017;5(5):390–400.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N Engl J Med. 2009;360(10):973–84.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–207.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Bel EH, Wenzel SE, Thompson PJ, Prazma CM, Keene ON, Yancey SW, et al. Oral glucocorticoid-sparing effect of mepolizumab in eosinophilic asthma. N Engl J Med. 2014;371(13):1189–97.CrossRefGoogle Scholar
  100. 100.
    Yancey SW, Ortega HG, Keene ON, Mayer B, Gunsoy NB, Brightling CE, et al. Meta-analysis of asthma-related hospitalization in mepolizumab studies of severe eosinophilic asthma. J Allergy Clin Immunol. 2017;139(4):1167–75 e2.PubMedCrossRefGoogle Scholar
  101. 101.
    Haldar P, Brightling CE, Singapuri A, Hargadon B, Gupta S, Monteiro W, et al. Outcomes after cessation of mepolizumab therapy in severe eosinophilic asthma: a 12-month follow-up analysis. J Allergy Clin Immunol. 2014;133(3):921–3.PubMedCrossRefGoogle Scholar
  102. 102.
    Sehmi R, Smith SG, Kjarsgaard M, Radford K, Boulet LP, Lemiere C, et al. Role of local eosinophilopoietic processes in the development of airway eosinophilia in prednisone-dependent severe asthma. Clin Exp Allergy. 2016;46(6):793–802.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bjermer L, Lemiere C, Maspero J, Weiss S, Zangrilli J, Germinaro M. Reslizumab for inadequately controlled asthma with elevated blood eosinophil levels: a randomized phase 3 study. Chest. 2016;150(4):789–98.PubMedCrossRefGoogle Scholar
  104. 104.
    Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–66.PubMedCrossRefGoogle Scholar
  105. 105.
    Corren J, Weinstein S, Janka L, Zangrilli J, Garin M. Phase 3 study of reslizumab in patients with poorly controlled asthma: effects across a broad range of eosinophil counts. Chest. 2016;150(4):799–810.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Murphy K, Jacobs J, Bjermer L, Fahrenholz JM, Shalit Y, Garin M, et al. Long-term safety and efficacy of reslizumab in patients with eosinophilic asthma. J Allergy Clin Immunol Pract. 2017;5(6):1572–81 e3.PubMedCrossRefGoogle Scholar
  107. 107.
    Busse WW, Katial R, Gossage D, Sari S, Wang B, Kolbeck R, et al. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol. 2010;125(6):1237–44 e2.PubMedCrossRefGoogle Scholar
  108. 108.
    Laviolette M, Gossage DL, Gauvreau G, Leigh R, Olivenstein R, Katial R, et al. Effects of benralizumab on airway eosinophils in asthmatic patients with sputum eosinophilia. J Allergy Clin Immunol. 2013;132(5):1086–96 e5.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Castro M, Wenzel SE, Bleecker ER, Pizzichini E, Kuna P, Busse WW, et al. Benralizumab, an anti-interleukin 5 receptor alpha monoclonal antibody, versus placebo for uncontrolled eosinophilic asthma: a phase 2b randomised dose-ranging study. Lancet Respir Med. 2014;2(11):879–90.PubMedCrossRefGoogle Scholar
  110. 110.
    FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2128–41.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2115–27.CrossRefGoogle Scholar
  112. 112.
    Nair P, Wenzel S, Rabe KF, Bourdin A, Lugogo NL, Kuna P, et al. Oral glucocorticoid-sparing effect of benralizumab in severe asthma. N Engl J Med. 2017;376(25):2448–58.CrossRefGoogle Scholar
  113. 113.
    Mansur AH, Jacobs JS, Hebert J, Clawson C, Tao W, Wu Y, et al. Functionality, reliability, and performance of an accessorized pre-filled syringe with home-administered subcutaneous benralizumab for adult patients with severe asthma. B32 THERAPEUTIC TRIALS IN ASTHMA, p. A3194-A.Google Scholar
  114. 114.
    Wenzel S, Ford L, Pearlman D, Spector S, Sher L, Skobieranda F, et al. Dupilumab in persistent asthma with elevated eosinophil levels. N Engl J Med. 2013;368(26):2455–66.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Wenzel S, Castro M, Corren J, Maspero J, Wang L, Zhang B, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet. 2016;388(10039):31–44.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Rabe KF, Nair P, Brusselle G, Maspero JF, Castro M, Sher L, et al. Efficacy and safety of dupilumab in glucocorticoid-dependent severe asthma. N Engl J Med. 2018;378(26):2475–85.CrossRefGoogle Scholar
  117. 117.
    Mullard A. FDA approves dupilumab for severe eczema. Nat Rev Drug Discov. 2017;16(5):305.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Noonan M, Korenblat P, Mosesova S, Scheerens H, Arron JR, Zheng Y, et al. Dose-ranging study of lebrikizumab in asthmatic patients not receiving inhaled steroids. J Allergy Clin Immunol. 2013;132(3):567–74 e12.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Panettieri RA Jr, Sjobring U, Peterffy A, Wessman P, Bowen K, Piper E, et al. Tralokinumab for severe, uncontrolled asthma (STRATOS 1 and STRATOS 2): two randomised, double-blind, placebo-controlled, phase 3 clinical trials. Lancet Respir Med. 2018;6(7):511–25.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Russell RJ, Chachi L, FitzGerald JM, Backer V, Olivenstein R, Titlestad IL, et al. Effect of tralokinumab, an interleukin-13 neutralising monoclonal antibody, on eosinophilic airway inflammation in uncontrolled moderate-to-severe asthma (MESOS): a multicentre, double-blind, randomised, placebo-controlled phase 2 trial. Lancet Respir Med. 2018;6(7):499–510.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Piper E, Brightling C, Niven R, Oh C, Faggioni R, Poon K, et al. A phase II placebo-controlled study of tralokinumab in moderate-to-severe asthma. Eur Respir J. 2013;41(2):330–8.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol. 2002;3(7):673–80.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Ying S, O’Connor B, Ratoff J, Meng Q, Mallett K, Cousins D, et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J Immunol. 2005;174(12):8183–90.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Gauvreau GM, O’Byrne PM, Boulet LP, Wang Y, Cockcroft D, Bigler J, et al. Effects of an anti-TSLP antibody on allergen-induced asthmatic responses. N Engl J Med. 2014;370(22):2102–10.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–46.CrossRefGoogle Scholar
  126. 126.
    Drake LY, Kita H. IL-33: biological properties, functions, and roles in airway disease. Immunol Rev. 2017;278(1):173–84.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Pedersen S. Global Strategy for Asthma Management and Prevention (2017 update). Guideline. 2017.Google Scholar
  128. 128.
    Panettierei RA, Kotlikoff MI, Gerthoffer WT, Hershenson MB, Woodruff PG, Hall IP, Banks-Schlegel S. Airway smooth muscle in bronchial tone, inflammation, and remodeling: basic knowledge to clinical relevance. Am J Respir Crit Care Med. 2008;177(3):248–52.CrossRefGoogle Scholar
  129. 129.
    Kuwano K, Bosken CH, Pare PD, Bai TR, Wiggs BR, Hoggs JC. Small airways dimensions in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993;148(5):1220–5.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Benayoun L, Druilhe A, Dombret MC, Aubier M, Pretolani M. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med. 2003;167(10):1360–8.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Elias JA, Zhu Z, Chupp G, Homer RJ. Airway remodeling in asthma. J Clin Invest. 1999;104(8):1001–6.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol. 2016;311(6):L1113–L40.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Bergeron C, Boulet LP. Structural changes in airway diseases: characteristics, mechanisms, consequences, and pharmacologic modulation. Chest. 2006;129(4):1068–87.PubMedCrossRefGoogle Scholar
  134. 134.
    Roche WR, Beasley R, Williams JH, Holgate ST. Subepithelial fibrosis in the bronchi of asthmatics. Lancet. 1989;1(8637):520–4.PubMedCrossRefGoogle Scholar
  135. 135.
    Brewster CE, Howarth PH, Djukanovic R, Wilson J, Holgate ST, Roche WR. Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol. 1990;3(5):507–11.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Ni Y, Mulier S, Maio Y, Michel L, Marchal G. A review of the general aspects of radiofrequency ablation. Abdom Imaging. 2005;30(4):381–400.PubMedCrossRefGoogle Scholar
  137. 137.
    Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, et al. Reduction in airway hyperresponsiveness to methacholine by the application of RF energy in dogs. J Appl Physiol (1985). 2004;97(5):1946–53.CrossRefGoogle Scholar
  138. 138.
    Miller JD, Cox G, Vincic L, Lombard CM, Loomas BE, Danek CJ. A prospective feasibility study of bronchial thermoplasty in the human airway. Chest. 2005;127(6):1999–2006.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Cox G, Miller JD, McWilliams A, Fitzgerald JM, Lam S. Bronchial thermoplasty for asthma. Am J Respir Crit Care Med. 2006;173(9):965–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med. 2007;356(13):1327–37.CrossRefGoogle Scholar
  141. 141.
    Pavord ID, Cox G, Thomson NC, Rubin AS, Corris PA, Niven RM, et al. Safety and efficacy of bronchial thermoplasty in symptomatic, severe asthma. Am J Respir Crit Care Med. 2007;176(12):1185–91.PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade Lima M, Shah PL, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med. 2010;181(2):116–24.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, et al. Long-term (5 year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm Med. 2011;11:8.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Pavord ID, Thomson NC, Niven RM, Corris PA, Chung KF, Cox G, et al. Safety of bronchial thermoplasty in patients with severe refractory asthma. Ann Allergy Asthma Immunol. 2013;111(5):402–7.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Castro M, Rubin A, Laviolette M, Hanania NA, Armstrong B, Cox G, et al. Persistence of effectiveness of bronchial thermoplasty in patients with severe asthma. Ann Allergy Asthma Immunol. 2011;107(1):65–70.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Wechsler ME, Laviolette M, Rubin AS, Fiterman J, Lapa e Silva JR, Shah PL, et al. Bronchial thermoplasty: Long-term safety and effectiveness in patients with severe persistent asthma. J Allergy Clin Immunol. 2013;132(6):1295–302.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Chupp G, Laviolette M, Cohn L, McEvoy C, Bansal S, Shifren A, Khatri S, Grubb GM, McMullen E, Strauven R, Kline JN, other members of the PAS2 Study Group. Long-term outcomes of bronchial thermoplasty in subjects with severe asthma: a comparison of 3-year follow-up results from two prospective multicentre studies. Eur Respir J. 2017;50(2):1700017.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Pretolani M, Bergqvist A, Thabut G, Dombret MC, Knapp D, Hamidi F, et al. Effectiveness of bronchial thermoplasty in patients with severe refractory asthma: clinical and histopathologic correlations. J Allergy Clin Immunol. 2017;139(4):1176–85.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Salem IH, Boulet LP, Biardel S, Lampron N, Martel S, Laviolette M, Chakir J. Long-term effects of bronchial thermoplasty on airway smooth muscle and reticular basement membrane thickness in severe asthma. Ann Am Thorac Soc. 2016;13:1426–8.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Facciolongo N, Di Stefano A, Pietrini V, Galeone C, Bellanova F, Menzella F, et al. Nerve ablation after bronchial thermoplasty and sustained improvement in severe asthma. BMC Pulm Med. 2018;18(1):29.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Hirst SJ. Regulation of airway smooth muscle cell immunomodulatory function: role in asthma. Respir Physiol Neurobiol. 2003;137(2–3):309–26.PubMedCrossRefGoogle Scholar
  152. 152.
    Marc Malovrh M, Rozman A, Skrgat S, Silar M, Selb J, Flezar M, et al. Bronchial thermoplasty induces immunomodulation with a significant increase in pulmonary CD4(+)25(+) regulatory T cells. Ann Allergy Asthma Immunol. 2017;119(3):289–90.PubMedCrossRefGoogle Scholar
  153. 153.
    Denner DR, Doeing DC, Hogarth DK, Dugan K, Naureckas ET, White SR. Airway inflammation after bronchial thermoplasty for severe asthma. Ann Am Thorac Soc. 2015;12(9):1302–9.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Blaiss MS, Castro M, Chipps BE, Zitt M, Panettieri RA Jr, Foggs MB. Guiding principles for use of newer biologic and bronchial thermoplasty for patients with severe asthma. Ann Allergy Asthma Immunol. 2017;119:533–40.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Trivedi A, Pavord ID, Castro M. Bronchial thermoplasty and biological therapy as targeted treatments for severe uncontrolled asthma. Lancet. 2016;4(7):585–92.PubMedGoogle Scholar
  156. 156.
    Cangelosi MJ, Ortendahl JD, Meckley LM, Bentley TG, Anene AM, Shriner KM, Fox J. Cost-effectiveness of bronchial thermoplasy in commercially-insured patients with poorly controlled, severe, persistent asthma. Expert Rev Pharmacoecon Outcomes Res. 2015;15(2):357–64.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Zein JG, Menegay MC, Singer ME, Erzurum SC, Gildea TR, Cicenia JC, Khatri S, Castro M, Udeh BL. Cost effectiveness of bronchial thermoplasty in patients with severe uncontrolled asthma. J Asthma. 2016;53(2):194–200.PubMedCrossRefGoogle Scholar
  158. 158.
    Zafari Z, Sadatsafavi M, Marra C, Chen W, FitzGerald JM. Cost-effectiveness of bronchial thermoplasty, omalizumab, and standard therapy for moderate-to-severe allergic asthma. PLoS One. 2016;11(1):e0146003.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Menzella F, Galeone C, Bertolini F, Castagnetti C, Facciolongo N. Innovative treatments for severe refractory asthma: how to choose the right option for the right patient? J Asthma Allergy. 2017;10:237–47.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Beghe B, Fabbri LM, Controll M, Papi A. Update in asthma 2016. Am J Respir Crit Care Med. 2017;196(5):548–57.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Sarikonda K, Sheshadri A, Koch T, Kozlowski J, Wilson B, Schechtman K, Chen AC, Castro M. Predictors of bronchial thermoplasty response in patients with severe refractory asthma. Minisymposium B13 mechanisms and treatment considerations for severe asthma. 2014.Google Scholar
  162. 162.
    Zanon M, Strieder DL, Rubin AS, Watte G, Marchiori E, Cardoso PFG, Hochhegger B. Use of MDCT to assess the results of bronchial thermoplasty. AJR Am J Roentgenol. 2017;209(4):752–6.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Chupp G, Laviolette M, Cohn L, McEvoy C, Bansal S, Shifren A, et al. Long-term outcomes of bronchial thermoplasty in subjects with severe asthma: a comparison of 3-year follow-up results from two prospective multicentre studies. Eur Respir J. 2017;50(2):1700017.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, Adcock IM, Bateman ED, Bel EH, Bleecker ER, Boulet L, Brightling C, Chanez P, Dahlen S, Djukanovic R, Frey U, Gaga M, Gibson P, Hamid Q, Jajour NN, Mauad T, Sorkness RL, Teague WG. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Arjun Mohan
    • 1
  • Jon Grace
    • 2
  • Anne Mainardi
    • 3
  • Geoffrey Chupp
    • 3
  • Njira Lugogo
    • 2
    Email author
  1. 1.East Carolina UniversityGreenvilleUSA
  2. 2.University of MichiganAnn ArborUSA
  3. 3.Yale University School of MedicineNew HavenUSA

Personalised recommendations