Advertisement

Severe Asthma in Childhood: Special Considerations

  • Deepa RastogiEmail author
  • Andrew H. Liu
Chapter
  • 448 Downloads
Part of the Respiratory Medicine book series (RM)

Abstract

Severe asthma in children is often notable for frequent exacerbations that drive fear and life disruption for child and family, and may contribute to poor airways growth. This chapter distinguishes severe asthma from asthma that is difficult to control and is due to diagnoses masquerading as asthma, comorbid conditions that make asthma worse, or nonadherence to medication regimen. Two main phenotypes of severe childhood asthma include (1) highly atopic, exacerbation-prone, and (2) low-atopic/nonatopic, highly symptomatic, asthma. Current evidence supports inclusion of the following when initially evaluating the child with severe asthma: standardized asthma severity assessment (e.g., Composite Asthma Severity Index [CASI]), spirometry with bronchodilator responsiveness, assessments of rhinitis and asthma-relevant environmental exposures, and exacerbation risk (e.g., Seasonal Asthma Exacerbation Index [SAEI]). Phenotypic characterization with fractional exhaled nitric oxide (FeNO), inhalant allergen sensitization, total serum IgE, and peripheral blood eosinophils can improve outcomes via phenotype-directed care. Pulmonary imaging, bronchoscopy, and bronchoprovocation testing can strengthen the evaluation for masqueraders and management. Inhaled corticosteroid (ICS) controller therapy remains a mainstay of daily treatment for the prevention of asthma exacerbations and is commonly combined with long-acting beta-agonist (LABA) to achieve good control. However, in children with severe asthma, ICS-LABA can fall short, and insights to improve outcomes can be obtained by revisiting the basics (e.g., masqueraders, comorbid conditions, adherence), deepening evaluation (e.g., pulmonary imaging, bronchoscopy), and phenotype-directed adjunctive therapies. For children with highly atopic, exacerbation-prone severe asthma, recently developed immunomodulatory therapies can reduce exacerbations and severity. Antimicrobial therapy (e.g., macrolides) may be helpful, especially in children with low-atopic/nonatopic severe asthma, and may be most effective when utilized in a diagnostically directed manner. There is an unmet need to better understand the pathobiology of this low-atopic/nonatopic phenotype of severe asthma in both children and adults. It is currently associated with obesity, cigarette smoke exposure, microbiome disruption, innate immune dysregulation, oxidant stress, and/or respiratory viral infections. In addition to today’s approach to children with severe asthma, we also discuss research directions on the horizon that are poised to improve management and outcomes for these children.

Keywords

Severe childhood asthma Exacerbations Difficult-to-control asthma Highly atopic vs. low-atopic/nonatopic Standardized asthma control questionnaires Pulmonary function testing Composite asthma control measures Immunomodulatory biologics 

References

  1. 1.
    Asher I, Pearce N. Global burden of asthma among children. Int J Tuberc Lung Dis. 2014;18(11):1269–78.CrossRefGoogle Scholar
  2. 2.
    Ehteshami-Afshar S, FitzGerald JM, Doyle-Waters MM, Sadatsafavi M. The global economic burden of asthma and chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2016;20(1):11–23.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Center for Disease Control. https://www.cdc.gov/asthma/default.htm. 2018.
  4. 4.
    Chung KF, Wenzel SE, Brozek JL, Bush A, Castro M, Sterk PJ, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–73.CrossRefGoogle Scholar
  5. 5.
    CDC Vital Signs-Asthma. Available from: https://www.cdc.gov/vitalsigns/asthma/.
  6. 6.
    Barnett SB, Nurmagambetov TA. Costs of asthma in the United States: 2002–2007. J Allergy Clin Immunol. 2011;127(1):145–52.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Moorman JE, Akinbami LJ, Bailey CM, Zahran HS, King ME, Johnson CA, et al. National surveillance of asthma: United States, 2001–2010. Vital Health Stat 3. 2012;35:1–58.Google Scholar
  8. 8.
    Szefler SJ, Zeiger RS, Haselkorn T, Mink DR, Kamath TV, Fish JE, et al. Economic burden of impairment in children with severe or difficult-to-treat asthma. Ann Allergy Asthma Immunol. 2011;107(2):110–9.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Calhoun WJ, Haselkorn T, Miller DP, Omachi TA. Asthma exacerbations and lung function in patients with severe or difficult-to-treat asthma. J Allergy Clin Immunol. 2015;136(4):1125–7.e4.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    O’Byrne PM, Pedersen S, Lamm CJ, Tan WC, Busse WW, Group SI. Severe exacerbations and decline in lung function in asthma. Am J Respir Crit Care Med. 2009;179(1):19–24.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bai TR, Vonk JM, Postma DS, Boezen HM. Severe exacerbations predict excess lung function decline in asthma. Eur Respir J. 2007;30(3):452–6.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Belgrave DC, Buchan I, Bishop C, Lowe L, Simpson A, Custovic A. Trajectories of lung function during childhood. Am J Respir Crit Care Med. 2014;189(9):1101–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    McGeachie MJ, Yates KP, Zhou X, Guo F, Sternberg AL, Van Natta ML, et al. Patterns of growth and decline in lung function in persistent childhood asthma. N Engl J Med. 2016;374(19):1842–52.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Moore WC, Meyers DA, Wenzel SE, Teague WG, Li H, Li X, et al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. Am J Respir Crit Care Med. 2010;181(4):315–23.CrossRefGoogle Scholar
  15. 15.
    Bui DS, Burgess JA, Lowe AJ, Perret JL, Lodge CJ, Bui M, et al. Childhood lung function predicts adult chronic obstructive pulmonary disease and asthma-chronic obstructive pulmonary disease overlap syndrome. Am J Respir Crit Care Med. 2017;196(1):39–46.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bush A, Fleming L, Saglani S. Severe asthma in children. Respirology. 2017;22(5):886–97.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Barsky EE, Giancola LM, Baxi SN, Gaffin JM. A practical approach to severe asthma in children. Ann Am Thorac Soc. 2018;15(4):399–408.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    McCracken JL, Veeranki SP, Ameredes BT, Calhoun WJ. Diagnosis and management of asthma in adults: a review. JAMA. 2017;318(3):279–90.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Poole A, Urbanek C, Eng C, Schageman J, Jacobson S, O’Connor BP, et al. Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J Allergy Clin Immunol. 2014;133(3):670–8.e12.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Yang IV, Richards A, Davidson EJ, Stevens AD, Kolakowski CA, Martin RJ, et al. The nasal Methylome: a key to understanding allergic asthma. Am J Respir Crit Care Med. 2017;195(6):829–31.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Esteban CA, Klein RB, Kopel SJ, McQuaid EL, Fritz GK, Seifer R, et al. Underdiagnosed and undertreated allergic rhinitis in Urban School-aged children with asthma. Pediatr Allergy Immunol Pulmonol. 2014;27(2):75–81.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yilmaz O, Bakirtas A, Ertoy Karagol HI, Topal E, Demirsoy MS. Allergic rhinitis may impact the recovery of pulmonary function tests after moderate/severe asthma exacerbation in children. Allergy. 2014;69(5):652–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Pongracic JA, Krouse RZ, Babineau DC, Zoratti EM, Cohen RT, Wood RA, et al. Distinguishing characteristics of difficult-to-control asthma in inner-city children and adolescents. J Allergy Clin Immunol. 2016;138(4):1030–41.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Liu AH, Babineau DC, Krouse RZ, Zoratti EM, Pongracic JA, O'Connor GT, et al. Pathways through which asthma risk factors contribute to asthma severity in inner-city children. J Allergy Clin Immunol. 2016;138(4):1042–50.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Brozek JL, Bousquet J, Agache I, Agarwal A, Bachert C, Bosnic-Anticevich S, et al. Allergic Rhinitis and Its Impact on Asthma (ARIA) guidelines-2016 revision. J Allergy Clin Immunol. 2017;140(4):950–8.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Togias A, Gergen PJ, Hu JW, Babineau DC, Wood RA, Cohen RT, et al. Rhinitis in children and adolescents with asthma: ubiquitous, difficult to control, and associated with asthma outcomes. J Allergy Clin Immunol. 2018;143(3):1003–11.e10.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Zoratti EM, Krouse RZ, Babineau DC, Pongracic JA, O’Connor GT, Wood RA, et al. Asthma phenotypes in inner-city children. J Allergy Clin Immunol. 2016;138(4):1016–29.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Castro-Rodríguez JA, Holberg CJ, Wright AL, Martinez FD. A clinical index to define risk of asthma in young children with recurrent wheezing. Am J Resp Crit Care Med. 2000;162(4 Pt 1):1403–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Anto JM, Bousquet J, Akdis M, Auffray C, Keil T, Momas I, et al. Mechanisms of the Development of Allergy (MeDALL): introducing novel concepts in allergy phenotypes. J Allergy Clin Immunol. 2017;139(2):388–99.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Boulay ME, Morin A, Laprise C, Boulet LP. Asthma and rhinitis: what is the relationship? Curr Opin Allergy Clin Immunol. 2012;12(5):449–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Figueroa-Munoz JI, Chinn S, Rona RJ. Association between obesity and asthma in 4-11 year old children in the UK. Thorax. 2001;56(2):133–7.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gilliland FD, Berhane K, Islam T, McConnell R, Gauderman WJ, Gilliland SS, et al. Obesity and the risk of newly diagnosed asthma in school-age children. Am J Epidemiol. 2003;158(5):406–15.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gross E, Lee DS, Hotz A, Ngo KC, Rastogi D. Impact of obesity on asthma morbidity during a hospitalization. Hosp Pediatr. 2018;8(9):538–46.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Borrell LN, Nguyen EA, Roth LA, Oh SS, Tcheurekdjian H, Sen S, et al. Childhood obesity and asthma control in the GALA II and SAGE II studies. Am J Respir Crit Care Med. 2013;187(7):697–702.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Weinmayr G, Forastiere F, Büchele G, Jaensch A, Strachan DP. G; N, et al. overweight/obesity and respiratory and allergic disease in children: International Study of Asthma and Allergies in Childhood (ISAAC) phase two. PLoS One. 2014;9(12):e113996.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Vo P, Makker K, Matta-Arroyo E, Hall CB, Arens R, Rastogi D. The association of overweight and obesity with spirometric values in minority children referred for asthma evaluation. J Asthma. 2013;50(1):56–63.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Rastogi D, Canfield S, Andrade A, Hall CB, Isasi CR, Rubinstein A, et al. Obesity-associated asthma in children: a distinct entity. Chest. 2012;141(4):895–905.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Rastogi D, Bhalani K, Hall CB, Isasi CR. Association of pulmonary function with adiposity and metabolic abnormalities in urban minority adolescents. Ann Amer Thor Soc. 2014;11(5):744–52.CrossRefGoogle Scholar
  39. 39.
    Musaad SM, Patterson T, Ericksen M, Lindsey M, Dietrich K, Succop P, et al. Comparison of anthropometric measures of obesity in childhood allergic asthma: central obesity is most relevant. J Allergy Clin Immunol. 2009;123(6):1321–7.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Santamaria F, Montella S, De Stefano S, Sperlì F, Barbarano F, Spadaro R, et al. Asthma, atopy, and airway inflammation in obese children. J Allergy Clin Immunol. 2007;120(4):965–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Rastogi D, Fraser S, Oh J, Huber AM, Schulman Y, Bhagtani RH, et al. Inflammation, metabolic dysregulation and pulmonary function among obese asthmatic urban adolescents. Am J Resp Crit Care Med. 2015;191(2):149–60.PubMedCrossRefGoogle Scholar
  42. 42.
    Forno E, Lescher R, Strunk R, Weiss S, Fuhlbrigge A, Celedón JC. Decreased response to inhaled steroids in overweight and obese asthmatic children. J Allergy Clin Immunol. 2011;127(3):741–9.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Jensen ME, Gibson PG, Collins CE, Hilton JM, Wood LG. Diet-induced weight loss in obese children with asthma: a randomized controlled trial. Clin Exp Allergy. 2013;43(7):775–84.PubMedCrossRefGoogle Scholar
  44. 44.
    Balson BM, Kravitz EK, McGeady SJ. Diagnosis and treatment of gastroesophageal reflux in children and adolescents with severe asthma. Ann Allergy Asthma Immunol. 1998;81(2):159–64.PubMedCrossRefGoogle Scholar
  45. 45.
    Khoshoo V, Le T, Haydel RM Jr, Landry L, Nelson C. Role of gastroesophageal reflux in older children with persistent asthma. Chest. 2003;123(4):1008–13.PubMedCrossRefGoogle Scholar
  46. 46.
    Gunnbjörnsdóttir MI, Omenaas E, Gíslason T, Norrman E, Olin AC, Jõgi R, et al. Obesity and nocturnal gastro-oesophageal reflux are related to onset of asthma and respiratory symptoms. Eur Resp J. 2004;24(1):116–21.CrossRefGoogle Scholar
  47. 47.
    Blake K, Teague WG. Gastroesophageal reflux disease and childhood asthma. Curr Opin Pulm Med. 2013;19(1):24–9.PubMedGoogle Scholar
  48. 48.
    Valet RS, Carroll KN, Gebretsadik T, Minton PA, Woodward KB, Liu Z, et al. Gastroesophageal reflux disease increases infant acute respiratory illness severity, but not childhood asthma. Pediatr Allergy Immunol Pulmonol. 2014;27(1):30–3.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Writing Committee for the American Lung Association Asthma Clinical Research C, Holbrook JT, Wise RA, Gold BD, Blake K, Brown ED, et al. Lansoprazole for children with poorly controlled asthma: a randomized controlled trial. JAMA 2012;307(4):373–381.CrossRefGoogle Scholar
  50. 50.
    Good JT Jr, Kolakowski CA, Groshong SD, Murphy JR, Martin RJ. Refractory asthma: importance of bronchoscopy to identify phenotypes and direct therapy. Chest. 2012;141(3):599–606.PubMedCrossRefGoogle Scholar
  51. 51.
    Good JT Jr, Rollins DR, Curran-Everett D, Lommatzsch SE, Carolan BJ, Stubenrauch PC, et al. An index to objectively score supraglottic abnormalities in refractory asthma: learning, validation, and significance. Chest. 2014;145(3):486–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Min YZ, Subbarao P, Narang I. The bidirectional relationship between asthma and obstructive sleep apnea: which came first? J Pediatr. 2016;176:10–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Ross KR, Storfer-Isser A, Hart MA, Kibler AM, Rueschman M, Rosen CL, et al. Sleep-disordered breathing is associated with asthma severity in children. J Pediatr. 2012;160(5):736–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Spruyt K, Gozal D. Screening of pediatric sleep-disordered breathing: a proposed unbiased discriminative set of questions using clinical severity scales. Chest. 2012;142(6):1508–15.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Blaakman SW, Cohen A, Fagnano M, Halterman JS. Asthma medication adherence among urban teens: a qualitative analysis of barriers, facilitators and experiences with school-based care. J Asthma. 2014;51(5):522–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Burgess SW, Sly PD, Morawska A, Devadason SG. Assessing adherence and factors associated with adherence in young children with asthma. Respirology. 2008;13(4):559–63.PubMedCrossRefGoogle Scholar
  57. 57.
    Pelaez S, Bacon SL, Aulls MW, Lacoste G, Lavoie KL. Similarities and differences between asthma health care professional and patient views regarding medication adherence. Can Respir J. 2014;21(4):221–6.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Strunk RC, Mrazek DA, Fuhrmann GS, LaBrecque JF. Physiologic and psychological characteristics associated with deaths due to asthma in childhood. A case-controlled study. JAMA. 1985;254(9):1193–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Szefler SJ. Monitoring and adherence in asthma management. Lancet Respir Med. 2015;3(3):175–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Milgrom H, Bender B, Ackerson L, Bowry P, Smith B, Rand C. Noncompliance and treatment failure in children with asthma. J Allergy Clin Immunol. 1996;98(6 Pt 1):1051–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Merchant RK, Inamdar R, Quade RC. Effectiveness of population health management using the propeller health asthma platform: a randomized clinical trial. J Allergy Clin Immunol Pract. 2016;4(3):455–63.PubMedCrossRefGoogle Scholar
  62. 62.
    Barrett MA, Humblet O, Marcus JE, Henderson K, Smith T, Eid N, et al. Effect of a mobile health, sensor-driven asthma management platform on asthma control. Ann Allergy Asthma Immunol. 2017;119(5):415–21 e1.PubMedCrossRefGoogle Scholar
  63. 63.
    Hoch H, Kempe A, Brinton J, Szefler S. Feasibility of medication monitoring sensors in high risk asthmatic children. J Asthma. 2018;56(3):270–2.PubMedCrossRefGoogle Scholar
  64. 64.
    Fitzpatrick AM, Teague WG, Meyers DA, Peters SP, Li X, Li H, et al. Heterogeneity of severe asthma in childhood: confirmation by cluster analysis of children in the National Institutes of Health/National Heart, Lung, and Blood Institute Severe Asthma Research Program. J Allergy Clin Immunol. 2011;127(2):382–9.e1–13.CrossRefGoogle Scholar
  65. 65.
    Teague WG, Phillips BR, Fahy JV, Wenzel SE, Fitzpatrick AM, Moore WC, et al. Baseline features of the Severe Asthma Research Program (SARP III) cohort: differences with age. J Allergy Clin Immunol Pract. 2018;6(2):545–54.e4.CrossRefGoogle Scholar
  66. 66.
    Fitzpatrick AM, Jackson DJ, Mauger DT, Boehmer SJ, Phipatanakul W, Sheehan WJ, et al. Individualized therapy for persistent asthma in young children. J Allergy Clin Immunol. 2016;138(6):1608–18.e12.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Reddy MB, Liu AH, Robinson JL, Klinnert MD. Recurrent wheeze phenotypes in poor urban preschool-age children. J Allergy Clin Immunol Pract. 2018;7(2):736–9.e5.PubMedCrossRefGoogle Scholar
  68. 68.
    Brown KR, Krouse RZ, Calatroni A, Visness CM, Sivaprasad U, Kercsmar CM, et al. Endotypes of difficult-to-control asthma in inner-city African American children. PLoS One. 2017;12(7):e0180778.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Postma DS, Bleecker ER, Amelung PJ, Holroyd KJ, Xu J, Panhuysen CI, et al. Genetic susceptibility to asthma--bronchial hyperresponsiveness coinherited with a major gene for atopy. N Engl J Med. 1995;333(14):894–900.PubMedCrossRefGoogle Scholar
  70. 70.
    Martinez FD, Graves PE, Baldini M, Solomon S, Erickson R. Association between genetic polymorphisms of the beta2-adrenoceptor and response to albuterol in children with and without a history of wheezing. J Clin Invest. 1997;100(12):3184–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Morahan G, Huang D, Wu M, Holt BJ, White GP, Kendall GE, et al. Association of IL12B promoter polymorphism with severity of atopic and non-atopic asthma in children. Lancet. 2002;360(9331):455–9.PubMedCrossRefGoogle Scholar
  72. 72.
    Himes BE, Hunninghake GM, Baurley JW, Rafaels NM, Sleiman P, Strachan DP, et al. Genome-wide association analysis identifies PDE4D as an asthma-susceptibility gene. Am J Hum Genet. 2009;84(5):581–93.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Sleiman PM, Flory J, Imielinski M, Bradfield JP, Annaiah K, Willis-Owen SA, et al. Variants of DENND1B associated with asthma in children. N Engl J Med. 2010;362(1):36–44.PubMedCrossRefGoogle Scholar
  74. 74.
    Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, et al. A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet. 2014;46(1):51–5.PubMedCrossRefGoogle Scholar
  75. 75.
    Romieu I, Sienra-Monge JJ, Ramirez-Aguilar M, Moreno-Macias H, Reyes-Ruiz NI, Estela del Rio-Navarro B, et al. Genetic polymorphism of GSTM1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax. 2004;59(1):8–10.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Tantisira KG, Silverman ES, Mariani TJ, Xu J, Richter BG, Klanderman BJ, et al. FCER2: a pharmacogenetic basis for severe exacerbations in children with asthma. J Allergy Clin Immunol. 2007;120(6):1285–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE, et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med. 2011;365(13):1173–83.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Salari K, Choudhry S, Tang H, Naqvi M, Lind D, Avila PC, et al. Genetic admixture and asthma-related phenotypes in Mexican American and Puerto Rican asthmatics. Genet Epidemiol. 2005;29(1):76–86.PubMedCrossRefGoogle Scholar
  79. 79.
    Galanter J, Choudhry S, Eng C, Nazario S, Rodriguez-Santana JR, Casal J, et al. ORMDL3 gene is associated with asthma in three ethnically diverse populations. Am J Respir Crit Care Med. 2008;177(11):1194–200.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S, et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature. 2007;448(7152):470–3.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Moser S, Peroni DG, Comberiati P, Piacentini GL. Asthma and viruses: is there a relationship? Front Biosci. 2014;6:46–54.Google Scholar
  82. 82.
    Busse WW, Lemanske RF Jr, Gern JE. Role of viral respiratory infections in asthma and asthma exacerbations. Lancet. 2010;376(9743):826–34.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Zomer-Kooijker K, van der Ent CK, Ermers MJ, Uiterwaal CS, Rovers MM, Bont LJ, et al. Increased risk of wheeze and decreased lung function after respiratory syncytial virus infection. PLoS One. 2014;9(1):e87162.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lotz MT, Moore ML, Peebles RS Jr. Respiratory syncytial virus and reactive airway disease. Curr Top Microbiol Immunol. 2013;372:105–18.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Midulla F, Nicolai A, Ferrara M, Gentile F, Pierangeli A, Bonci E, et al. Recurrent wheezing 36 months after bronchiolitis is associated with rhinovirus infections and blood eosinophilia. Acta Paediatr. 2014;103(10):1094–9.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Saraya T, Kurai D, Ishii H, Ito A, Sasaki Y, Niwa S, et al. Epidemiology of virus-induced asthma exacerbations: with special reference to the role of human rhinovirus. Front Microbiol. 2014;5:226.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Neuzil KM, Wright PF, Mitchel EF Jr, Griffin MR. The burden of influenza illness in children with asthma and other chronic medical conditions. J Pediatr. 2000;137(6):856–64.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Bochkov YA, Gern JE. Rhinoviruses and their receptors: implications for allergic disease. Curr Allergy Asthma Rep. 2016;16(4):30.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, et al. Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A. 2015;112(17):5485–90.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Teach SJ, Gill MA, Togias A, Sorkness CA, Arbes SJ Jr, Calatroni A, et al. Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. J Allergy Clin Immunol. 2015;136(6):1476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Esquivel A, Busse WW, Calatroni A, Togias AG, Grindle KG, Bochkov YA, et al. Effects of Omalizumab on rhinovirus infections, illnesses, and exacerbations of asthma. Am J Respir Crit Care Med. 2017;196(8):985–92.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Gill MA, Liu AH, Calatroni A, Krouse RZ, Shao B, Schiltz A, et al. Enhanced plasmacytoid dendritic cell antiviral responses after omalizumab. J Allergy Clin Immunol. 2018;141(5):1735–43 e9.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Miller RL, Chew GL, Bell CA, Biedermann SA, Aggarwal M, Kinney PL, et al. Prenatal exposure, maternal sensitization, and sensitization in utero to indoor allergens in an inner-city cohort. Am J Respir Crit Care Med. 2001;164(6):995–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Gaffin JM, Kanchongkittiphon W, Phipatanakul W. Perinatal and early childhood environmental factors influencing allergic asthma immunopathogenesis. Int Immunopharmacol. 2014;22(1):21–30.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Rastogi D, Reddy M, Neugebauer R. Comparison of patterns of allergen sensitization among inner-city Hispanic and African American children with asthma. Ann Allergy Asthma Immunol. 2006;97(5):636–42.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Chiu CY, Huang YL, Tsai MH, Tu YL, Hua MC, Yao TC, et al. Sensitization to food and inhalant allergens in relation to atopic diseases in early childhood: a birth cohort study. PLoS One. 2014;9(7):e102809.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Gent JF, Kezik JM, Hill ME, Tsai E, Li DW, Leaderer BP. Household mold and dust allergens: exposure, sensitization and childhood asthma morbidity. Environ Res. 2012;118:86–93.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Castanhinha S, Sherburn R, Walker S, Gupta A, Bossley CJ, Buckley J, et al. Pediatric severe asthma with fungal sensitization is mediated by steroid-resistant IL-33. J Allergy Clin Immunol. 2015;136(2):312–22 e7.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kanchongkittiphon W, Mendell MJ, Gaffin JM, Wang G, Phipatanakul W. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect. 2015;123(1):6–20.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Dick S, Doust E, Cowie H, Ayres JG, Turner S. Associations between environmental exposures and asthma control and exacerbations in young children: a systematic review. BMJ Open. 2014;4(2):e003827.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    McCarville M, Sohn MW, Oh E, Weiss K, Gupta R. Environmental tobacco smoke and asthma exacerbations and severity: the difference between measured and reported exposure. Arch Dis Child. 2013;98(7):510–4.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Cunningham J, Dockery DW, Speizer FE. Maternal smoking during pregnancy as a predictor of lung function in children. Am J Epidemiol. 1994;139(12):1139–52.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gill R, Krishnan S, Dozor AJ. Low-level environmental tobacco smoke exposure and inflammatory biomarkers in children with asthma. J Asthma. 2014;51(4):355–9.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Valsamis C, Krishnan S, Dozor AJ. The effects of low-level environmental tobacco smoke exposure on pulmonary function tests in preschool children with asthma. J Asthma. 2014;51(7):685–90.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Baxi R, Sharma M, Roseby R, Polnay A, Priest N, Waters E, et al. Family and carer smoking control programmes for reducing children’s exposure to environmental tobacco smoke. Cochrane Database Syst Rev. 2014;3:CD001746.Google Scholar
  106. 106.
    Ciaccio CE, Gurley-Calvez T, Shireman TI. Indoor tobacco legislation is associated with fewer emergency department visits for asthma exacerbation in children. Ann Allergy Asthma Immunol. 2016;117(6):641–5.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Bao W, Xu G, Lu J, Snetselaar LG, Wallace RB. Changes in electronic cigarette use among adults in the United States, 2014–2016. JAMA. 2018;319(19):2039–41.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Martin EM, Clapp PW, Rebuli ME, Pawlak EA, Glista-Baker E, Benowitz NL, et al. E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol. 2016;311(1):L135–44.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Clapp PW, Jaspers I. Electronic cigarettes: their constituents and potential links to asthma. Curr Allergy Asthma Rep. 2017;17(11):79.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Reidel B, Radicioni G, Clapp PW, Ford AA, Abdelwahab S, Rebuli ME, et al. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion. Am J Respir Crit Care Med. 2018;197(4):492–501.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hancox RJ, Shin HH, Gray AR, Poulton R, Sears MR. Effects of quitting cannabis on respiratory symptoms. Eur Respir J. 2015;46(1):80–7.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Decuyper II, Van Gasse AL, Faber MA, Elst J, Mertens C, Rihs HP, et al. Exploring the diagnosis and profile of cannabis allergy. J Allergy Clin Immunol Pract. 2018;7(3):983–9.e5.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Gaffin JM, Hauptman M, Petty CR, Sheehan WJ, Lai PS, Wolfson JM, et al. Nitrogen dioxide exposure in school classrooms of inner-city children with asthma. J Allergy Clin Immunol. 2018;141(6):2249–55.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Sheehan WJ, Permaul P, Petty CR, Coull BA, Baxi SN, Gaffin JM, et al. Association between allergen exposure in inner-city schools and asthma morbidity among students. JAMA Pediatr. 2017;171(1):31–8.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Phipatanakul W, Koutrakis P, Coull BA, Kang CM, Wolfson JM, Ferguson ST, et al. The school inner-city asthma intervention study: design, rationale, methods, and lessons learned. Contemp Clin Trials. 2017;60:14–23.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Jhun I, Gaffin JM, Coull BA, Huffaker MF, Petty CR, Sheehan WJ, et al. School environmental intervention to reduce particulate pollutant exposures for children with asthma. J Allergy Clin Immunol Pract. 2017;5(1):154–9 e3.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    DellaValle CT, Triche EW, Leaderer BP, Bell ML. Effects of ambient pollen concentrations on frequency and severity of asthma symptoms among asthmatic children. Epidemiology. 2012;23(1):55–63.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Qian Z, He Q, Kong L, Xu F, Wei F, Chapman RS, et al. Respiratory responses to diverse indoor combustion air pollution sources. Indoor Air. 2007;17(2):135–42.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Patel MM, Chillrud SN, Correa JC, Hazi Y, Feinberg M, Kc D, et al. Traffic-related particulate matter and acute respiratory symptoms among New York City area adolescents. Environ Health Perspect. 2010;118(9):1338–43.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Sarnat SE, Raysoni AU, Li WW, Holguin F, Johnson BA, Flores Luevano S, et al. Air pollution and acute respiratory response in a panel of asthmatic children along the U.S.-Mexico border. Environ Health Perspect. 2012;120(3):437–44.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Brandt EB, Kovacic MB, Lee GB, Gibson AM, Acciani TH, Le Cras TD, et al. Diesel exhaust particle induction of IL-17A contributes to severe asthma. J Allergy Clin Immmunol. 2013;132(5):1194–204.CrossRefGoogle Scholar
  122. 122.
    Delfino RJ, Wu J, Tjoa T, Gullesserian SK, Nickerson B, Gillen DL. Asthma morbidity and ambient air pollution: effect modification by residential traffic-related air pollution. Epidemiology. 2014;25(1):48–57.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Kheirbek I, Wheeler K, Walters S, Kass D, Matte T. PM2.5 and ozone health impacts and disparities in New York City: sensitivity to spatial and temporal resolution. Air Qual Atmos Health. 2013;6(2):473–86.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Global Strategy for Asthma Management and Prevention-Updated 2017. 2017. Available from: http://ginasthma.org/2017-gina-report-global-strategy-for-asthma-management-and-prevention/.
  125. 125.
    National Asthma Education and Prevention Program. Expert Panel Report 3 (EPR-3): Guidelines for the diagnosis and management of asthma-summary report 2007. J Allergy Clin Immunol. 2007;120(5 Suppl):S94–138.Google Scholar
  126. 126.
    Expert Panel Report 3: guidelines for the diagnosis and management of asthma. National Institute of Health: National Heart, Lung, and Blood Institute; 2007.Google Scholar
  127. 127.
    Liu AH, Zeiger R, Sorkness C, Mahr T, Ostrom N, Burgess S, et al. Development and cross-sectional validation of the childhood asthma control test. J Allergy Clin Immunol. 2007;119(4):817–25.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Liu AH, Zeiger RS, Sorkness CA, Ostrom NK, Chipps BE, Rosa K, et al. The Childhood Asthma Control Test: retrospective determination and clinical validation of a cut point to identify children with very poorly controlled asthma. J Allergy Clin Immunol. 2010;126(2):267–73, 73.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Schatz M, Sorkness CA, Li JT, Marcus P, Murray JJ, Nathan RA, et al. Asthma Control Test: reliability, validity, and responsiveness in patients not previously followed by asthma specialists. J Allergy Clin Immunol. 2006;117(3):549–56.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Schatz M, Zeiger RS, Drane A, Harden K, Cibildak A, Oosterman JE, et al. Reliability and predictive validity of the Asthma Control Test administered by telephone calls using speech recognition technology. J Allergy Clin Immunol. 2007;119(2):336–43.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Cajigal S, Wells KE, Peterson EL, Ahmedani BK, Yang JJ, Kumar R, et al. Predictive properties of the Asthma Control Test and its component questions for severe asthma exacerbations. J Allergy Clin Immunol Pract. 2017;5(1):121–7.e2.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Ko FW, Hui DS, Leung TF, Chu HY, Wong GW, Tung AH, et al. Evaluation of the asthma control test: a reliable determinant of disease stability and a predictor of future exacerbations. Respirology. 2012;17(2):370–8.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Bateman ED, Reddel HK, Eriksson G, Peterson S, Ostlund O, Sears MR, et al. Overall asthma control: the relationship between current control and future risk. J Allergy Clin Immunol. 2010;125(3):600–8, 8.e1–8.e6.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Chipps BE, Zeiger RS, Dorenbaum A, Borish L, Wenzel SE, Miller DP, et al. Assessment of asthma control and asthma exacerbations in the epidemiology and natural history of asthma: outcomes and treatment regimens (TENOR) observational cohort. Curr Respir Care Rep. 2012;1(4):259–69.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Sullivan SD, Wenzel SE, Bresnahan BW, Zheng B, Lee JH, Pritchard M, et al. Association of control and risk of severe asthma-related events in severe or difficult-to-treat asthma patients. Allergy. 2007;62(6):655–60.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Rao DR, Gaffin JM, Baxi SN, Sheehan WJ, Hoffman EB, Phipatanakul W. The utility of forced expiratory flow between 25% and 75% of vital capacity in predicting childhood asthma morbidity and severity. J Asthma. 2012;49(6):586–92.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Greenberg S. Asthma exacerbations: predisposing factors and prediction rules. Curr Opin Allergy Clin Immunol. 2013;13(3):225–36.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Schulze J, Biedebach S, Christmann M, Herrmann E, Voss S, Zielen S. Impulse oscillometry as a predictor of asthma exacerbations in young children. Respiration. 2016;91(2):107–14.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Fuhlbrigge AL, Weiss ST, Kuntz KM, Paltiel AD. Forced expiratory volume in 1 second percentage improves the classification of severity among children with asthma. Pediatrics. 2006;118(2):e347–55.PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948–68.PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Fitzpatrick AM, Gaston BM, Erzurum SC, Teague WG, National Institutes of Health/National Heart L, Blood Institute Severe Asthma Research P. Features of severe asthma in school-age children: atopy and increased exhaled nitric oxide. J Allergy Clin Immunol. 2006;118(6):1218–25.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Sorkness RL, Zoratti EM, Kattan M, Gergen PJ, Evans MD, Visness CM, et al. Obstruction phenotype as a predictor of asthma severity and instability in children. J Allergy Clin Immunol. 2018;142(4):1090–9 e4.PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Covar RA, Spahn JD, Murphy JR, Szefler SJ, Childhood Asthma Management Program Research G. Progression of asthma measured by lung function in the childhood asthma management program. Am J Respir Crit Care Med. 2004;170(3):234–41.PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Crapo RO, Casaburi R, Coates AL, Enright PL, Hankinson JL, Irvin CG, MacIntyre NR, McKay RT, Wanger JS, Anderson SD, Cockcroft DW, Fish JE, Sterk PJ. Guidelines for methacholine and exercise challenge testing—1999. Am J Respir Crit Care Med. 1999;161:309–29.Google Scholar
  145. 145.
    Weiss ST, Van Natta ML, Zeiger RS. Relationship between increased airway responsiveness and asthma severity in the childhood asthma management program. Am J Respir Crit Care Med. 2000;162(1):50–6.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Thamrin C, Zindel J, Nydegger R, Reddel HK, Chanez P, Wenzel SE, et al. Predicting future risk of asthma exacerbations using individual conditional probabilities. J Allergy Clin Immunol. 2011;127(6):1494–502.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Wu AC, Tantisira K, Li L, Schuemann B, Weiss ST, Fuhlbrigge AL, et al. Predictors of symptoms are different from predictors of severe exacerbations from asthma in children. Chest. 2011;140(1):100–7.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    van der Valk RJ, Baraldi E, Stern G, Frey U, de Jongste JC. Daily exhaled nitric oxide measurements and asthma exacerbations in children. Allergy. 2012;67(2):265–71.PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    van Vliet D, Alonso A, Rijkers G, Heynens J, Rosias P, Muris J, et al. Prediction of asthma exacerbations in children by innovative exhaled inflammatory markers: results of a longitudinal study. PLoS One. 2015;10(3):e0119434.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Hoch HE, Calatroni A, West JB, Liu AH, Gergen PJ, Gruchalla RS, et al. Can we predict fall asthma exacerbations? Validation of the seasonal asthma exacerbation index. J Allergy Clin Immunol. 2017;140(4):1130–7.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Teach SJ, Gergen PJ, Szefler SJ, Mitchell HE, Calatroni A, Wildfire J, et al. Seasonal risk factors for asthma exacerbations among inner-city children. J Allergy Clin Immunol. 2015;135(6):1465–73.e5.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Price D, Wilson AM, Chisholm A, Rigazio A, Burden A, Thomas M, et al. Predicting frequent asthma exacerbations using blood eosinophil count and other patient data routinely available in clinical practice. J Asthma Allergy. 2016;9:1–12.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Forno E, Fuhlbrigge A, Soto-Quiros ME, Avila L, Raby BA, Brehm J, et al. Risk factors and predictive clinical scores for asthma exacerbations in childhood. Chest. 2010;138(5):1156–65.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Wildfire JJ, Gergen PJ, Sorkness CA, Mitchell HE, Calatroni A, Kattan M, et al. Development and validation of the Composite Asthma Severity Index – an outcome measure for use in children and adolescents. J Allergy Clin Immmunol. 2012;129(3):694–701.CrossRefGoogle Scholar
  155. 155.
    Krouse RZ, Sorkness CA, Wildfire JJ, Calatroni A, Gruchalla R, Hershey GKK, et al. Minimally important differences and risk levels for the Composite Asthma Severity Index. J Allergy Clin Immunol. 2017;139(3):1052–5.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Trivedi A, Hall C, Hoffman EA, Woods JC, Gierada DS, Castro M. Using imaging as a biomarker for asthma. J Allergy Clin Immunol. 2017;139(1):1–10.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Walker C, Gupta S, Hartley R, Brightling CE. Computed tomography scans in severe asthma: utility and clinical implications. Curr Opin Pulm Med. 2012;18(1):42–7.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Jenkins HA, Cool C, Szefler SJ, Covar R, Brugman S, Gelfand EW, et al. Histopathology of severe childhood asthma: a case series. Chest. 2003;124(1):32–41.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Saglani S. Childhood severe asthma: new insights on remodelling and biomarkers. Paediatr Respir Rev. 2017;24:11–3.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Covar RA, Szefler SJ, Zeiger RS, Sorkness CA, Moss M, Mauger DT, et al. Factors associated with asthma exacerbations during a long-term clinical trial of controller medications in children. J Allergy Clin Immunol. 2008;122(4):741–7 e4.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Haselkorn T, Zeiger RS, Chipps BE, Mink DR, Szefler SJ, Simons FE, et al. Recent asthma exacerbations predict future exacerbations in children with severe or difficult-to-treat asthma. J Allergy Clin Immunol. 2009;124(5):921–7.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Miller MK, Lee JH, Miller DP, Wenzel SE, Group TS. Recent asthma exacerbations: a key predictor of future exacerbations. Respir Med. 2007;101(3):481–9.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Bloomberg GR, Trinkaus KM, Fisher EB Jr, Musick JR, Strunk RC. Hospital readmissions for childhood asthma: a 10-year metropolitan study. Am J Respir Crit Care Med. 2003;167(8):1068–76.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Swern AS, Tozzi CA, Knorr B, Bisgaard H. Predicting an asthma exacerbation in children 2 to 5 years of age. Ann Allergy Asthma Immunol. 2008;101(6):626–30.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Guilbert TW, Morgan WJ, Zeiger RS, Mauger DT, Boehmer SJ, Szefler SJ, et al. Long-term inhaled corticosteroids in preschool children at high risk for asthma. N Engl J Med. 2006;354(19):1985–97.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    The Childhood Asthma Management Program Research Group. Long-term effects of budesonide or nedocromil in children with asthma. N Engl J Med. 2000;343(15):1054–63.CrossRefGoogle Scholar
  167. 167.
    Engelkes M, Janssens HM, de Jongste JC, Sturkenboom MC, Verhamme KM. Medication adherence and the risk of severe asthma exacerbations: a systematic review. Eur Respir J. 2015;45(2):396–407.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Williams LK, Peterson EL, Wells K, Ahmedani BK, Kumar R, Burchard EG, et al. Quantifying the proportion of severe asthma exacerbations attributable to inhaled corticosteroid nonadherence. J Allergy Clin Immunol. 2011;128(6):1185–91.e2.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Foden J, Hand CH. Does use of a corticosteroid/long-acting beta-agonist combination inhaler increase adherence to inhaled corticosteroids? Prim Care Respir J. 2008;17(4):246–7.PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Stoloff SW, Stempel DA, Meyer J, Stanford RH, Carranza Rosenzweig JR. Improved refill persistence with fluticasone propionate and salmeterol in a single inhaler compared with other controller therapies. J Allergy Clin Immunol. 2004;113(2):245–51.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Stanford RH, Fuhlbrigge A, Riedel A, Rey GG, Stempel DA. An observational study of fixed dose combination fluticasone propionate/salmeterol or fluticasone propionate alone on asthma-related outcomes. Curr Med Res Opin. 2008;24(11):3141–8.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Stempel DA, Raphiou IH, Kral KM, Yeakey AM, Emmett AH, Prazma CM, et al. Serious asthma events with fluticasone plus salmeterol versus fluticasone alone. N Engl J Med. 2016;374(19):1822–30.PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Stempel DA, Szefler SJ, Pedersen S, Zeiger RS, Yeakey AM, Lee LA, et al. Safety of adding salmeterol to fluticasone propionate in children with asthma. N Engl J Med. 2016;375(9):840–9.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Krishnan JA, Bender BG, Wamboldt FS, Szefler SJ, Adkinson NF Jr, Zeiger RS, et al. Adherence to inhaled corticosteroids: an ancillary study of the Childhood Asthma Management Program clinical trial. J Allergy Clin Immunol. 2012;129(1):112–8.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    McNicholl DM, Stevenson M, McGarvey LP, Heaney LG. The utility of fractional exhaled nitric oxide suppression in the identification of nonadherence in difficult asthma. Am J Respir Crit Care Med. 2012;186(11):1102–8.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Koster ES, Raaijmakers JA, Vijverberg SJ, Maitland-van der Zee AH. Inhaled corticosteroid adherence in paediatric patients: the PACMAN cohort study. Pharmacoepidemiol Drug Saf. 2011;20(10):1064–72.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Morton RW, Everard ML, Elphick HE. Adherence in childhood asthma: the elephant in the room. Arch Dis Child. 2014;99(10):949–53.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Adams SA, Leach MC, Feudtner C, Miller VA, Kenyon CC. Automated adherence reminders for high risk children with asthma: a research protocol. JMIR Res Protoc. 2017;6(3):e48.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Jackson DJ, Bacharier LB, Mauger DT, Boehmer S, Beigelman A, Chmiel JF, et al. Quintupling inhaled glucocorticoids to prevent childhood asthma exacerbations. N Engl J Med. 2018;378(10):891–901.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Kraft M, Cassell GH, Henson JE, Watson H, Williamson J, Marmion BP, et al. Detection of Mycoplasma pneumoniae in the airways of adults with chronic asthma. Am J Respir Crit Care Med. 1998;158(3):998–1001.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Kraft M, Cassell GH, Pak J, Martin RJ. Mycoplasma pneumoniae and Chlamydia pneumoniae in asthma: effect of clarithromycin. Chest. 2002;121(6):1782–8.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Metz G, Kraft M. Effects of atypical infections with Mycoplasma and Chlamydia on asthma. Immunol Allergy Clin N Am. 2010;30(4):575–85, vii–viii.CrossRefGoogle Scholar
  183. 183.
    Patel KK, Vicencio AG, Du Z, Tsirilakis K, Salva PS, Webley WC. Infectious Chlamydia pneumoniae is associated with elevated interleukin-8 and airway neutrophilia in children with refractory asthma. Pediatr Infect Dis J. 2010;29(12):1093–8.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Webley WC, Hahn DL. Infection-mediated asthma: etiology, mechanisms and treatment options, with focus on Chlamydia pneumoniae and macrolides. Respir Res. 2017;18(1):98.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Stokholm J, Chawes BL, Vissing NH, Bjarnadottir E, Pedersen TM, Vinding RK, et al. Azithromycin for episodes with asthma-like symptoms in young children aged 1-3 years: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2016;4(1):19–26.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Bacharier LB, Guilbert TW, Mauger DT, Boehmer S, Beigelman A, Fitzpatrick AM, et al. Early administration of azithromycin and prevention of severe lower respiratory tract illnesses in preschool children with a history of such illnesses: a randomized clinical trial. JAMA. 2015;314(19):2034–44.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Beigelman A, Isaacson-Schmid M, Sajol G, Baty J, Rodriguez OM, Leege E, et al. Randomized trial to evaluate azithromycin’s effects on serum and upper airway IL-8 levels and recurrent wheezing in infants with respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol. 2015;135(5):1171–8.e1.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Grimaldi-Bensouda L, Zureik M, Aubier M, Humbert M, Levy J, Benichou J, et al. Does omalizumab make a difference to the real-life treatment of asthma exacerbations?: results from a large cohort of patients with severe uncontrolled asthma. Chest. 2013;143(2):398–405.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Busse WW, Morgan WJ, Gergen PJ, Mitchell HE, Gern JE, Liu AH, et al. Randomized trial of omalizumab (anti-IgE) for asthma in inner-city children. N Engl J Med. 2011;364(11):1005–15.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Milgrom H, Berger W, Nayak A, Gupta N, Pollard S, McAlary M, et al. Treatment of childhood asthma with anti-immunoglobulin E antibody (omalizumab). Pediatrics. 2001;108(2):E36.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Custovic A, Simpson A. The role of inhalant allergens in allergic airways disease. J Investig Allergol Clin Immunol. 2012;22(6):393–401; qiuz follow.PubMedPubMedCentralGoogle Scholar
  192. 192.
    Gern JE. Virus/allergen interaction in asthma exacerbation. Ann Am Thorac Soc. 2015;12(Suppl 2):S137–43.PubMedPubMedCentralGoogle Scholar
  193. 193.
    Zayed Y, Kheiri B, Banifadel M, Hicks M, Aburahma A, Hamid K, et al. Dupilumab safety and efficacy in uncontrolled asthma: a systematic review and meta-analysis of randomized clinical trials. J Asthma. 2018:1–10.Google Scholar
  194. 194.
    Castro M, Corren J, Pavord ID, Maspero J, Wenzel S, Rabe KF, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486–96.CrossRefGoogle Scholar
  195. 195.
    Ortega HG, Liu MC, Pavord ID, Brusselle GG, FitzGerald JM, Chetta A, et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N Engl J Med. 2014;371(13):1198–207.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Pavord ID, Korn S, Howarth P, Bleecker ER, Buhl R, Keene ON, et al. Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial. Lancet. 2012;380(9842):651–9.CrossRefGoogle Scholar
  197. 197.
    Bleecker ER, FitzGerald JM, Chanez P, Papi A, Weinstein SF, Barker P, et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting beta2-agonists (SIROCCO): a randomised, multicentre, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2115–27.CrossRefGoogle Scholar
  198. 198.
    FitzGerald JM, Bleecker ER, Nair P, Korn S, Ohta K, Lommatzsch M, et al. Benralizumab, an anti-interleukin-5 receptor alpha monoclonal antibody, as add-on treatment for patients with severe, uncontrolled, eosinophilic asthma (CALIMA): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2016;388(10056):2128–41.PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Nair P, Wenzel S, Rabe KF, Bourdin A, Lugogo NL, Kuna P, et al. Oral glucocorticoid-sparing effect of Benralizumab in severe asthma. N Engl J Med. 2017;376(25):2448–58.CrossRefGoogle Scholar
  200. 200.
    Castro M, Zangrilli J, Wechsler ME, Bateman ED, Brusselle GG, Bardin P, et al. Reslizumab for inadequately controlled asthma with elevated blood eosinophil counts: results from two multicentre, parallel, double-blind, randomised, placebo-controlled, phase 3 trials. Lancet Respir Med. 2015;3(5):355–66.PubMedCrossRefGoogle Scholar
  201. 201.
    Ortega HG, Yancey SW, Mayer B, Gunsoy NB, Keene ON, Bleecker ER, et al. Severe eosinophilic asthma treated with mepolizumab stratified by baseline eosinophil thresholds: a secondary analysis of the DREAM and MENSA studies. Lancet Respir Med. 2016;4(7):549–56.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Asamoah F, Kakourou A, Dhami S, Lau S, Agache I, Muraro A, et al. Allergen immunotherapy for allergic asthma: a systematic overview of systematic reviews. Clin Transl Allergy. 2017;7:25.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Bhogal SK, McGillivray D, Bourbeau J, Benedetti A, Bartlett S, Ducharme FM. Early administration of systemic corticosteroids reduces hospital admission rates for children with moderate and severe asthma exacerbation. Ann Emerg Med. 2012;60(1):84–91.e3.PubMedCrossRefGoogle Scholar
  204. 204.
    Ganaie MB, Munavvar M, Gordon M, Lim HF, Evans DJ. Patient- and parent-initiated oral steroids for asthma exacerbations. Cochrane Database Syst Rev. 2016;12:CD012195.PubMedGoogle Scholar
  205. 205.
    Cronin JJ, McCoy S, Kennedy U, An Fhaili SN, Wakai A, Hayden J, et al. A randomized trial of single-dose oral dexamethasone versus multidose prednisolone for acute exacerbations of asthma in children who attend the emergency department. Ann Emerg Med. 2016;67(5):593–601 e3.PubMedCrossRefGoogle Scholar
  206. 206.
    Johnston SL, Szigeti M, Cross M, Brightling C, Chaudhuri R, Harrison T, et al. Azithromycin for acute exacerbations of asthma: the AZALEA randomized clinical trial. JAMA Intern Med. 2016;176(11):1630–7.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departments of PediatricsChildren’s Hospital at Montefiore, Albert Einstein College of MedicineBronxUSA
  2. 2.Departments of PediatricsChildren’s Hospital Colorado, University of Colorado School of MedicineAuroraUSA

Personalised recommendations