Advertisement

Practical Considerations in Management of Non-eosinophilic Asthma

  • Meghan Althoff
  • Fernando HolguinEmail author
Chapter
  • 453 Downloads
Part of the Respiratory Medicine book series (RM)

Abstract

Asthma is heterogeneous disease that can be broadly classified into eosinophilic and non-eosinophilic asthma based on sputum and or blood eosinophils. Noneosinophilic asthma can be further subdivided by predominant inflammatory cell types: neutrophilic, mixed granulocytic, and paucigranulocytic asthma. Patients with non-eosinophilic asthma represent approximately half of all asthma cases in adults and have been shown to have the full spectrum of disease, ranging from mild to severe asthma. Non-eosinophilic asthma accounts for approximately half of all asthma cases, however because its mechanisms are not well understood there are a lack of available therapies targeted to this population. This chapter discusses the major phenotypes of Non-eosinophilic and current treatment approaches.

Keywords

Non type-2 asthma Non-eosinophilic asthma Neutrophilic asthma Paucigranulocytic asthma Obesity-associated asthma 

References

  1. 1.
    Carr TF, Zeki AA, Kraft M. Eosinophilic and noneosinophilic asthma. Am J Respir Crit Care Med. 2018;197(1):22–37.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Simpson JL, Scott R, Boyle MJ, Gibson PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology. 2006;11(1):54–61.PubMedCrossRefGoogle Scholar
  3. 3.
    Papaioannou AI, Diamant Z, Bakakos P, Loukides S. Towards precision medicine in severe asthma: treatment algorithms based on treatable traits. Respir Med. 2018;142:15–22.PubMedCrossRefGoogle Scholar
  4. 4.
    Douwes J, Gibson P, Pekkanen J, Pearce N. Non-eosinophilic asthma: importance and possible mechanisms. Thorax. 2002;57(7):643–8.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Wenzel SE. Asthma: defining of the persistent adult phenotypes. Lancet. 2006;368(9537):804–13.PubMedCrossRefGoogle Scholar
  6. 6.
    Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest. 2001;119(5):1329–36.PubMedCrossRefGoogle Scholar
  7. 7.
    Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–8.PubMedCrossRefGoogle Scholar
  8. 8.
    Pavord ID, Brightling CE, Woltmann G, Wardlaw AJ. Non-eosinophilic corticosteroid unresponsive asthma. Lancet. 1999;353(9171):2213–4.PubMedCrossRefGoogle Scholar
  9. 9.
    McGrath KW, Icitovic N, Boushey HA, Lazarus SC, Sutherland ER, Chinchilli VM, et al. A large subgroup of mild-to-moderate asthma is persistently noneosinophilic. Am J Respir Crit Care Med. 2012;185(6):612–9.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Szefler SJ, Wenzel S, Brown R, Erzurum SC, Fahy JV, Hamilton RG, et al. Asthma outcomes: biomarkers. J Allergy Clin Immunol. 2012;129(3 Suppl):S9–23.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Berry M, Morgan A, Shaw DE, Parker D, Green R, Brightling C, et al. Pathological features and inhaled corticosteroid response of eosinophilic and non-eosinophilic asthma. Thorax. 2007;62(12):1043–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Petsky HL, Li A, Chang AB. Tailored interventions based on sputum eosinophils versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev. 2017;8:Cd005603.PubMedGoogle Scholar
  13. 13.
    Moore WC, Hastie AT, Li X, Li H, Busse WW, Jarjour NN, et al. Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. J Allergy Clin Immunol. 2014;133(6):1557–63.e5.PubMedCrossRefGoogle Scholar
  14. 14.
    Korevaar DA, Westerhof GA, Wang J, Cohen JF, Spijker R, Sterk PJ, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: a systematic review and meta-analysis. Lancet Respir Med. 2015;3(4):290–300.PubMedCrossRefGoogle Scholar
  15. 15.
    Wagener AH, de Nijs SB, Lutter R, Sousa AR, Weersink EJ, Bel EH, et al. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax. 2015;70(2):115–20.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Zhang XY, Simpson JL, Powell H, Yang IA, Upham JW, Reynolds PN, et al. Full blood count parameters for the detection of asthma inflammatory phenotypes. Clin Exp Allergy. 2014;44(9):1137–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Hastie AT, Moore WC, Li H, Rector BM, Ortega VE, Pascual RM, et al. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J Allergy Clin Immunol. 2013;132(1):72–80.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Matsumoto H. Serum periostin: a novel biomarker for asthma management. Allergol Int. 2014;63(2):153–60.PubMedCrossRefGoogle Scholar
  19. 19.
    Izuhara K, Conway SJ, Moore BB, Matsumoto H, Holweg CT, Matthews JG, et al. Roles of periostin in respiratory disorders. Am J Respir Crit Care Med. 2016;193(9):949–56.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Jia G, Erickson RW, Choy DF, Mosesova S, Wu LC, Solberg OD, et al. Periostin is a systemic biomarker of eosinophilic airway inflammation in asthmatic patients. J Allergy Clin Immunol. 2012;130(3):647–54.e10.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Richards LB, Neerincx AH, van Bragt J, Sterk PJ, Bel EHD, Maitland-van der Zee AH. Biomarkers and asthma management: analysis and potential applications. Curr Opin Allergy Clin Immunol. 2018;18(2):96–108.PubMedCrossRefGoogle Scholar
  22. 22.
    Simpson JL, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, et al. Periostin levels and eosinophilic inflammation in poorly-controlled asthma. BMC Pulm Med. 2016;16(1):67.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cowan DC, Cowan JO, Palmay R, Williamson A, Taylor DR. Effects of steroid therapy on inflammatory cell subtypes in asthma. Thorax. 2010;65(5):384–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Thomson NC, Chaudhuri R, Heaney LG, Bucknall C, Niven RM, Brightling CE, et al. Clinical outcomes and inflammatory biomarkers in current smokers and exsmokers with severe asthma. J Allergy Clin Immunol. 2013;131(4):1008–16.PubMedCrossRefGoogle Scholar
  25. 25.
    Wood LG, Garg ML, Powell H, Gibson PG. Lycopene-rich treatments modify noneosinophilic airway inflammation in asthma: proof of concept. Free Radic Res. 2008;42(1):94–102.PubMedCrossRefGoogle Scholar
  26. 26.
    Wood LG, Shivappa N, Berthon BS, Gibson PG, Hebert JR. Dietary inflammatory index is related to asthma risk, lung function and systemic inflammation in asthma. Clin Exp Allergy. 2015;45(1):177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Nagasaki T, Matsumoto H. Influences of smoking and aging on allergic airway inflammation in asthma. Allergol Int. 2013;62(2):171–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Nyenhuis SM, Schwantes EA, Evans MD, Mathur SK. Airway neutrophil inflammatory phenotype in older subjects with asthma. J Allergy Clin Immunol. 2010;125(5):1163–5.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Green BJ, Wiriyachaiporn S, Grainge C, Rogers GB, Kehagia V, Lau L, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PloS One. 2014;9(6):e100645.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Newby C, Heaney LG, Menzies-Gow A, Niven RM, Mansur A, Bucknall C, et al. Statistical cluster analysis of the British Thoracic Society Severe refractory Asthma Registry: clinical outcomes and phenotype stability. PloS One. 2014;9(7):e102987.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Boudier A, Curjuric I, Basagana X, Hazgui H, Anto JM, Bousquet J, et al. Ten-year follow-up of cluster-based asthma phenotypes in adults. A pooled analysis of three cohorts. Am J Respir Crit Care Med. 2013;188(5):550–60.PubMedCrossRefGoogle Scholar
  32. 32.
    van Veen IH, Ten Brinke A, Gauw SA, Sterk PJ, Rabe KF, Bel EH. Consistency of sputum eosinophilia in difficult-to-treat asthma: a 5-year follow-up study. J Allergy Clin Immunol. 2009;124(3):615–7, 7.e1–2PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Kupczyk M, Dahlen B, Sterk PJ, Nizankowska-Mogilnicka E, Papi A, Bel EH, et al. Stability of phenotypes defined by physiological variables and biomarkers in adults with asthma. Allergy. 2014;69(9):1198–204.PubMedCrossRefGoogle Scholar
  34. 34.
    Loza MJ, Djukanovic R, Chung KF, Horowitz D, Ma K, Branigan P, et al. Validated and longitudinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respir Res. 2016;17(1):165.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, et al. Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol. 2011;127(2):355–60.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Aleman F, Lim HF, Nair P. Eosinophilic endotype of asthma. Immunol Allergy Clin North Am. 2016;36(3):559–68.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ntontsi P, Loukides S, Bakakos P, Kostikas K, Papatheodorou G, Papathanassiou E, et al. Clinical, functional and inflammatory characteristics in patients with paucigranulocytic stable asthma: comparison with different sputum phenotypes. Allergy. 2017;72(11):1761–7.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Schleich F, Brusselle G, Louis R, Vandenplas O, Michils A, Pilette C, et al. Heterogeneity of phenotypes in severe asthmatics. The Belgian severe asthma registry (BSAR). Respir Med. 2014;108(12):1723–32.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Green RH, Brightling CE, McKenna S, Hargadon B, Parker D, Bradding P, et al. Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial. Lancet. 2002;360(9347):1715–21.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Schleich FN, Manise M, Sele J, Henket M, Seidel L, Louis R. Distribution of sputum cellular phenotype in a large asthma cohort: predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm Med. 2013;13:11.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Peters-Golden M, Swern A, Bird SS, Hustad CM, Grant E, Edelman JM. Influence of body mass index on the response to asthma controller agents. Eur Respir J. 2006;27(3):495–503.CrossRefGoogle Scholar
  42. 42.
    Chalmers GW, Macleod KJ, Little SA, Thomson LJ, McSharry CP, Thomson NC. Influence of cigarette smoking on inhaled corticosteroid treatment in mild asthma. Thorax. 2002;57(3):226–30.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Telenga ED, Kerstjens HA, Ten Hacken NH, Postma DS, van den Berge M. Inflammation and corticosteroid responsiveness in ex-, current- and never-smoking asthmatics. BMC Pulm Med. 2013;13:58.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Anees W, Huggins V, Pavord ID, Robertson AS, Burge PS. Occupational asthma due to low molecular weight agents: eosinophilic and non-eosinophilic variants. Thorax. 2002;57(3):231–6.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lemiere C, Boulet LP, Chaboillez S, Forget A, Chiry S, Villeneuve H, et al. Work-exacerbated asthma and occupational asthma: do they really differ? J Allergy Clin Immunol. 2013;131(3):704–10.PubMedCrossRefGoogle Scholar
  46. 46.
    Hastie AT, Moore WC, Meyers DA, Vestal PL, Li H, Peters SP, et al. Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol. 2010;125(5):1028–36.e13.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Loza MJ, Adcock I, Auffray C, Chung KF, Djukanovic R, Sterk PJ, et al. Longitudinally stable, clinically defined clusters of patients with asthma independently identified in the ADEPT and U-BIOPRED asthma studies. Ann Am Thorac Soc. 2016;13(Suppl 1):S102–3.PubMedGoogle Scholar
  48. 48.
    Simpson JL, Grissell TV, Douwes J, Scott RJ, Boyle MJ, Gibson PG. Innate immune activation in neutrophilic asthma and bronchiectasis. Thorax. 2007;62(3):211–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Wood LG, Baines KJ, Fu J, Scott HA, Gibson PG. The neutrophilic inflammatory phenotype is associated with systemic inflammation in asthma. Chest. 2012;142(1):86–93.PubMedCrossRefGoogle Scholar
  50. 50.
    McKinley L, Alcorn JF, Peterson A, Dupont RB, Kapadia S, Logar A, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J Immunol. 2008;181(6):4089–97.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ricciardolo FLM, Sorbello V, Folino A, Gallo F, Massaglia GM, Favata G, et al. Identification of IL-17F/frequent exacerbator endotype in asthma. J Allergy Clin Immunol. 2017;140(2):395–406.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Carr TF, Kraft M. Chronic infection and severe asthma. Immunol Allergy Clin North Am. 2016;36(3):483–502.PubMedCrossRefGoogle Scholar
  53. 53.
    Gibson PG. Inflammatory phenotypes in adult asthma: clinical applications. Clin Respir J. 2009;3(4):198–206.PubMedCrossRefGoogle Scholar
  54. 54.
    Svenningsen S, Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Front Med. 2017;4:158.CrossRefGoogle Scholar
  55. 55.
    Chu DK, Al-Garawi A, Llop-Guevara A, Pillai RA, Radford K, Shen P, et al. Therapeutic potential of anti-IL-6 therapies for granulocytic airway inflammation in asthma. Allergy Asthma Clin Immunol. 2015;11(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Rincon M, Irvin CG. Role of IL-6 in asthma and other inflammatory pulmonary diseases. Int J Biol Sci. 2012;8(9):1281–90.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Demarche S, Schleich F, Henket M, Paulus V, Van Hees T, Louis R. Detailed analysis of sputum and systemic inflammation in asthma phenotypes: are paucigranulocytic asthmatics really non-inflammatory? BMC Pulm Med. 2016;16(1):46.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Damera G, Panettieri RA Jr. Does airway smooth muscle express an inflammatory phenotype in asthma? Br J Pharmacol. 2011;163(1):68–80.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Panettieri RA Jr. Neutrophilic and pauci-immune phenotypes in severe asthma. Immunol Allergy Clin North Am. 2016;36(3):569–79.PubMedCrossRefGoogle Scholar
  60. 60.
    Koziol-White CJ, Panettieri RA Jr. Airway smooth muscle and immunomodulation in acute exacerbations of airway disease. Immunol Rev. 2011;242(1):178–85.PubMedCrossRefGoogle Scholar
  61. 61.
    Woodruff PG, Dolganov GM, Ferrando RE, Donnelly S, Hays SR, Solberg OD, et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am J Respir Crit Care Med. 2004;169(9):1001–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Panettieri RA Jr. Airway smooth muscle: an immunomodulatory cell. J Allergy Clin Immunol. 2002;110(6 Suppl):S269–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Panettieri RA Jr, Kotlikoff MI, Gerthoffer WT, Hershenson MB, Woodruff PG, Hall IP, et al. Airway smooth muscle in bronchial tone, inflammation, and remodeling: basic knowledge to clinical relevance. Am J Respir Crit Care Med. 2008;177(3):248–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Iwamoto H, Yokoyama A, Shiota N, Shoda H, Haruta Y, Hattori N, et al. Tiotropium bromide is effective for severe asthma with noneosinophilic phenotype. Eur Respir J. 2008;31(6):1379–80.PubMedCrossRefGoogle Scholar
  65. 65.
    Grainge CL, Lau LC, Ward JA, Dulay V, Lahiff G, Wilson S, et al. Effect of bronchoconstriction on airway remodeling in asthma. N Engl J Med. 2011;364(21):2006–15.PubMedCrossRefGoogle Scholar
  66. 66.
    Lazaar AL, Panettieri RA Jr. Is airway remodeling clinically relevant in asthma? Am J Med. 2003;115(8):652–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Sideleva O, Dixon AE. The many faces of asthma in obesity. J Cell Biochem. 2014;115(3):421–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–25.PubMedCrossRefGoogle Scholar
  69. 69.
    Akerman MJ, Calacanis CM, Madsen MK. Relationship between asthma severity and obesity. J Asthma. 2004;41(5):521–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018;141(4):1169–79.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chen Y, Dales R, Jiang Y. The association between obesity and asthma is stronger in nonallergic than allergic adults. Chest. 2006;130(3):890–5.PubMedCrossRefGoogle Scholar
  72. 72.
    Akinbami LJ, Fryar CD. Current asthma prevalence by weight status among adults: United States, 2001–2014. NCHS Data Brief. 2016;(239):1–8.Google Scholar
  73. 73.
    Scott HA, Gibson PG, Garg ML, Wood LG. Airway inflammation is augmented by obesity and fatty acids in asthma. Eur Respir J. 2011;38(3):594–602.PubMedCrossRefGoogle Scholar
  74. 74.
    Beuther DA, Sutherland ER. Overweight, obesity, and incident asthma: a meta-analysis of prospective epidemiologic studies. Am J Respir Crit Care Med. 2007;175(7):661–6.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Litonjua AA, Sparrow D, Celedon JC, DeMolles D, Weiss ST. Association of body mass index with the development of methacholine airway hyperresponsiveness in men: the Normative Aging Study. Thorax. 2002;57(7):581–5.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Taylor B, Mannino D, Brown C, Crocker D, Twum-Baah N, Holguin F. Body mass index and asthma severity in the National Asthma Survey. Thorax. 2008;63(1):14–20.PubMedCrossRefGoogle Scholar
  77. 77.
    Mosen DM, Schatz M, Magid DJ, Camargo CA Jr. The relationship between obesity and asthma severity and control in adults. J Allergy Clin Immunol. 2008;122(3):507–11.e6.PubMedCrossRefGoogle Scholar
  78. 78.
    Holguin F, Bleecker ER, Busse WW, Calhoun WJ, Castro M, Erzurum SC, et al. Obesity and asthma: an association modified by age of asthma onset. J Allergy Clin Immunol. 2011;127(6):1486–93.e2.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Boulet LP, Franssen E. Influence of obesity on response to fluticasone with or without salmeterol in moderate asthma. Respir Med. 2007;101(11):2240–7.PubMedCrossRefGoogle Scholar
  80. 80.
    Camargo CA Jr, Boulet LP, Sutherland ER, Busse WW, Yancey SW, Emmett AH, et al. Body mass index and response to asthma therapy: fluticasone propionate/salmeterol versus montelukast. J Asthma. 2010;47(1):76–82.PubMedCrossRefGoogle Scholar
  81. 81.
    Lazarus SC, Boushey HA, Fahy JV, Chinchilli VM, Lemanske RF Jr, Sorkness CA, et al. Long-acting beta2-agonist monotherapy vs continued therapy with inhaled corticosteroids in patients with persistent asthma: a randomized controlled trial. JAMA. 2001;285(20):2583–93.PubMedCrossRefGoogle Scholar
  82. 82.
    Haahtela T, Jarvinen M, Kava T, Kiviranta K, Koskinen S, Lehtonen K, et al. Comparison of a beta 2-agonist, terbutaline, with an inhaled corticosteroid, budesonide, in newly detected asthma. N Engl J Med. 1991;325(6):388–92.PubMedCrossRefGoogle Scholar
  83. 83.
    Nelson HS, Weiss ST, Bleecker ER, Yancey SW, Dorinsky PM. The salmeterol multicenter asthma research trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006;129(1):15–26.PubMedCrossRefGoogle Scholar
  84. 84.
    National Asthma Education and Prevention Program Expert Panel Report 3: Guidelines for the Diagnosis and Management of Asthma 2007.Google Scholar
  85. 85.
    Furukawa T, Sakagami T, Koya T, Hasegawa T, Kawakami H, Kimura Y, et al. Characteristics of eosinophilic and non-eosinophilic asthma during treatment with inhaled corticosteroids. J Asthma. 2015;52(4):417–22.PubMedCrossRefGoogle Scholar
  86. 86.
    Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180(5):388–95.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Dente FL, Bacci E, Bartoli ML, Cianchetti S, Costa F, Di Franco A, et al. Effects of oral prednisone on sputum eosinophils and cytokines in patients with severe refractory asthma. Ann Allergy Asthma Immunol. 2010;104(6):464–70.PubMedCrossRefGoogle Scholar
  88. 88.
    Godon P, Boulet LP, Malo JL, Cartier A, Lemiere C. Assessment and evaluation of symptomatic steroid-naive asthmatics without sputum eosinophilia and their response to inhaled corticosteroids. Eur Respir J. 2002;20(6):1364–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Lemiere C, Tremblay C, FitzGerald M, Aaron SD, Leigh R, Boulet LP, et al. Effects of a short course of inhaled corticosteroids in noneosinophilic asthmatic subjects. Can Respir J. 2011;18(5):278–82.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bacci E, Latorre M, Cianchetti S, Bartoli M, Costa F, Di Franco A, et al. Transient sputum eosinophilia may occur over time in non-eosinophilic asthma and this is not prevented by salmeterol. Respirology. 2012;17(8):1199–206.PubMedCrossRefGoogle Scholar
  91. 91.
    Chari VM, McIvor RA. Tiotropium for the treatment of asthma: patient selection and perspectives. Can Respir J. 2018;2018:3464960.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Chung KF. New treatments for severe treatment-resistant asthma: targeting the right patient. Lancet Respir Med. 2013;1(8):639–52.PubMedCrossRefGoogle Scholar
  93. 93.
    Kerstjens HA, Casale TB, Bleecker ER, Meltzer EO, Pizzichini E, Schmidt O, et al. Tiotropium or salmeterol as add-on therapy to inhaled corticosteroids for patients with moderate symptomatic asthma: two replicate, double-blind, placebo-controlled, parallel-group, active-comparator, randomised trials. Lancet Respir Med. 2015;3(5):367–76.PubMedCrossRefGoogle Scholar
  94. 94.
    Kerstjens HA, Engel M, Dahl R, Paggiaro P, Beck E, Vandewalker M, et al. Tiotropium in asthma poorly controlled with standard combination therapy. N Engl J Med. 2012;367(13):1198–207.PubMedCrossRefGoogle Scholar
  95. 95.
    Khurana S, Paggiaro P, Buhl R, Bernstein JA, Haddon J, Unseld A, et al. Tiotropium reduces airflow obstruction in asthma patients, independent of body mass index. J Allergy Clin Immunol Pract. 2019;  https://doi.org/10.1016/j.jaip.2019.03.007; 30898691.
  96. 96.
    Thomson NC. Novel approaches to the management of noneosinophilic asthma. Ther Adv Respir Dis. 2016;10(3):211–34.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Culic O, Erakovic V, Parnham MJ. Anti-inflammatory effects of macrolide antibiotics. Eur J Pharmacol. 2001;429(1–3):209–29.PubMedCrossRefGoogle Scholar
  98. 98.
    Kobayashi Y, Wada H, Rossios C, Takagi D, Higaki M, Mikura S, et al. A novel macrolide solithromycin exerts superior anti-inflammatory effect via NF-kappaB inhibition. J Pharmacol Exp Ther. 2013;345(1):76–84.PubMedCrossRefGoogle Scholar
  99. 99.
    Cameron EJ, McSharry C, Chaudhuri R, Farrow S, Thomson NC. Long-term macrolide treatment of chronic inflammatory airway diseases: risks, benefits and future developments. Clin Exp Allergy. 2012;42(9):1302–12.PubMedCrossRefGoogle Scholar
  100. 100.
    Parnham MJ, Erakovic Haber V, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–45.CrossRefGoogle Scholar
  101. 101.
    Spahn JD, Fost DA, Covar R, Martin RJ, Brown EE, Szefler SJ, et al. Clarithromycin potentiates glucocorticoid responsiveness in patients with asthma: results of a pilot study. Ann Allergy Asthma Immunol. 2001;87(6):501–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Kobayashi Y, Wada H, Rossios C, Takagi D, Charron C, Barnes PJ, et al. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. Br J Pharmacol. 2013;169(5):1024–34.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Hao M, Lin J, Shu J, Zhang X, Luo Q, Pan L, et al. Clarithromycin might attenuate the airway inflammation of smoke-exposed asthmatic mice via affecting HDAC2. J Thorac Dis. 2015;7(7):1189–97.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Essilfie AT, Horvat JC, Kim RY, Mayall JR, Pinkerton JW, Beckett EL, et al. Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma. Thorax. 2015;70(5):458–67.PubMedCrossRefGoogle Scholar
  105. 105.
    Kew KM, Undela K, Kotortsi I, Ferrara G. Macrolides for chronic asthma. Cochrane Database Syst Rev. 2015;(9):CD002997.Google Scholar
  106. 106.
    Cameron EJ, Chaudhuri R, Mair F, McSharry C, Greenlaw N, Weir CJ, et al. Randomised controlled trial of azithromycin in smokers with asthma. Eur Respir J. 2013;42(5):1412–5.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Brusselle GG, Vanderstichele C, Jordens P, Deman R, Slabbynck H, Ringoet V, et al. Azithromycin for prevention of exacerbations in severe asthma (AZISAST): a multicentre randomised double-blind placebo-controlled trial. Thorax. 2013;68(4):322–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Gibson PG, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL, et al. Effect of azithromycin on asthma exacerbations and quality of life in adults with persistent uncontrolled asthma (AMAZES): a randomised, double-blind, placebo-controlled trial. Lancet. 2017;390(10095):659–68.PubMedCrossRefGoogle Scholar
  109. 109.
    Simpson JL, Powell H, Boyle MJ, Scott RJ, Gibson PG. Clarithromycin targets neutrophilic airway inflammation in refractory asthma. Am J Respir Crit Care Med. 2008;177(2):148–55.PubMedCrossRefGoogle Scholar
  110. 110.
    Greenwood J, Steinman L, Zamvil SS. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol. 2006;6(5):358–70.PubMedCrossRefGoogle Scholar
  111. 111.
    McKay A, Leung BP, McInnes IB, Thomson NC, Liew FY. A novel anti-inflammatory role of simvastatin in a murine model of allergic asthma. J Immunol. 2004;172(5):2903–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Davis BB, Zeki AA, Bratt JM, Wang L, Filosto S, Walby WF, et al. Simvastatin inhibits smoke-induced airway epithelial injury: implications for COPD therapy. Eur Respir J. 2013;42(2):350–61.PubMedCrossRefGoogle Scholar
  113. 113.
    Zeki AA, Franzi L, Last J, Kenyon NJ. Simvastatin inhibits airway hyperreactivity: implications for the mevalonate pathway and beyond. Am J Respir Crit Care Med. 2009;180(8):731–40.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Maneechotesuwan K, Ekjiratrakul W, Kasetsinsombat K, Wongkajornsilp A, Barnes PJ. Statins enhance the anti-inflammatory effects of inhaled corticosteroids in asthmatic patients through increased induction of indoleamine 2, 3-dioxygenase. J Allergy Clin Immunol. 2010;126(4):754–62.e1.PubMedCrossRefGoogle Scholar
  115. 115.
    Yuan C, Zhou L, Cheng J, Zhang J, Teng Y, Huang M, et al. Statins as potential therapeutic drug for asthma? Respir Res. 2012;13:108.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Braganza G, Chaudhuri R, McSharry C, Weir CJ, Donnelly I, Jolly L, et al. Effects of short-term treatment with atorvastatin in smokers with asthma–a randomized controlled trial. BMC Pulm Med. 2011;11:16.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Spears M, McSharry C, Thomson NC. Peroxisome proliferator-activated receptor-gamma agonists as potential anti-inflammatory agents in asthma and chronic obstructive pulmonary disease. Clin Exp Allergy. 2006;36(12):1494–504.PubMedCrossRefGoogle Scholar
  118. 118.
    Bourke JE, Bai Y, Donovan C, Esposito JG, Tan X, Sanderson MJ. Novel small airway bronchodilator responses to rosiglitazone in mouse lung slices. Am J Respir Cell Mol Biol. 2014;50(4):748–56.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Donovan C, Bailey SR, Tran J, Haitsma G, Ibrahim ZA, Foster SR, et al. Rosiglitazone elicits in vitro relaxation in airways and precision cut lung slices from a mouse model of chronic allergic airways disease. Am J Physiol Lung Cell Mol Physiol. 2015;309(10):L1219–28.PubMedCrossRefGoogle Scholar
  120. 120.
    Lea S, Plumb J, Metcalfe H, Spicer D, Woodman P, Fox JC, et al. The effect of peroxisome proliferator-activated receptor-gamma ligands on in vitro and in vivo models of COPD. Eur Respir J. 2014;43(2):409–20.PubMedCrossRefGoogle Scholar
  121. 121.
    Morissette MC, Shen P, Thayaparan D, Stampfli MR. Impacts of peroxisome proliferator-activated receptor-gamma activation on cigarette smoke-induced exacerbated response to bacteria. Eur Respir J. 2015;45(1):191–200.PubMedCrossRefGoogle Scholar
  122. 122.
    Zhao Y, Huang Y, He J, Li C, Deng W, Ran X, et al. Rosiglitazone, a peroxisome proliferator-activated receptor-gamma agonist, attenuates airway inflammation by inhibiting the proliferation of effector T cells in a murine model of neutrophilic asthma. Immunol Lett. 2014;157(1-2):9–15.PubMedCrossRefGoogle Scholar
  123. 123.
    Spears M, Donnelly I, Jolly L, Brannigan M, Ito K, McSharry C, et al. Bronchodilatory effect of the PPAR-gamma agonist rosiglitazone in smokers with asthma. Clin Pharmacol Ther. 2009;86(1):49–53.PubMedCrossRefGoogle Scholar
  124. 124.
    Dixon AE, Subramanian M, DeSarno M, Black K, Lane L, Holguin F. A pilot randomized controlled trial of pioglitazone for the treatment of poorly controlled asthma in obesity. Respir Res. 2015;16:143.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Dixon AE, Shade DM, Cohen RI, Skloot GS, Holbrook JT, Smith LJ, et al. Effect of obesity on clinical presentation and response to treatment in asthma. J Asthma. 2006;43(7):553–8.PubMedCrossRefGoogle Scholar
  126. 126.
    Spears M, Donnelly I, Jolly L, Brannigan M, Ito K, McSharry C, et al. Effect of low-dose theophylline plus beclometasone on lung function in smokers with asthma: a pilot study. Eur Respir J. 2009;33(5):1010–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Meltzer EO, Chervinsky P, Busse W, Ohta K, Bardin P, Bredenbroker D, et al. Roflumilast for asthma: efficacy findings in placebo-controlled studies. Pulm Pharmacol Ther. 2015;35(Suppl):S20–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Gauvreau GM, Boulet LP, Schmid-Wirlitsch C, Cote J, Duong M, Killian KJ, et al. Roflumilast attenuates allergen-induced inflammation in mild asthmatic subjects. Respir Res. 2011;12:140.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    O'Byrne PM, Metev H, Puu M, Richter K, Keen C, Uddin M, et al. Efficacy and safety of a CXCR2 antagonist, AZD5069, in patients with uncontrolled persistent asthma: a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2016;4(10):797–806.PubMedCrossRefGoogle Scholar
  130. 130.
    Nair P, Gaga M, Zervas E, Alagha K, Hargreave FE, O'Byrne PM, et al. Safety and efficacy of a CXCR2 antagonist in patients with severe asthma and sputum neutrophils: a randomized, placebo-controlled clinical trial. Clin Exp Allergy. 2012;42(7):1097–103.PubMedCrossRefGoogle Scholar
  131. 131.
    Lazaar AL, Sweeney LE, MacDonald AJ, Alexis NE, Chen C, Tal-Singer R. SB-656933, a novel CXCR2 selective antagonist, inhibits ex vivo neutrophil activation and ozone-induced airway inflammation in humans. Br J Clin Pharmacol. 2011;72(2):282–93.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Newcomb DC, Peebles RS Jr. Th17-mediated inflammation in asthma. Curr Opin Immunol. 2013;25(6):755–60.PubMedCrossRefGoogle Scholar
  133. 133.
    Chesne J, Braza F, Mahay G, Brouard S, Aronica M, Magnan A. IL-17 in severe asthma. Where do we stand? Am J Respir Crit Care Med. 2014;190(10):1094–101.PubMedCrossRefGoogle Scholar
  134. 134.
    Busse WW, Holgate S, Kerwin E, Chon Y, Feng J, Lin J, et al. Randomized, double-blind, placebo-controlled study of brodalumab, a human anti-IL-17 receptor monoclonal antibody, in moderate to severe asthma. Am J Respir Crit Care Med. 2013;188(11):1294–302.PubMedCrossRefGoogle Scholar
  135. 135.
    Kirsten A, Watz H, Pedersen F, Holz O, Smith R, Bruin G, et al. The anti-IL-17A antibody secukinumab does not attenuate ozone-induced airway neutrophilia in healthy volunteers. Eur Respir J. 2013;41(1):239–41.PubMedCrossRefGoogle Scholar
  136. 136.
    Dejager L, Dendoncker K, Eggermont M, Souffriau J, Van Hauwermeiren F, Willart M, et al. Neutralizing TNFalpha restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol. 2015;8(6):1212–25.PubMedCrossRefGoogle Scholar
  137. 137.
    Berry MA, Hargadon B, Shelley M, Parker D, Shaw DE, Green RH, et al. Evidence of a role of tumor necrosis factor alpha in refractory asthma. N Engl J Med. 2006;354(7):697–708.PubMedCrossRefGoogle Scholar
  138. 138.
    Howarth PH, Babu KS, Arshad HS, Lau L, Buckley M, McConnell W, et al. Tumour necrosis factor (TNFalpha) as a novel therapeutic target in symptomatic corticosteroid dependent asthma. Thorax. 2005;60(12):1012–8.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Holgate ST, Noonan M, Chanez P, Busse W, Dupont L, Pavord I, et al. Efficacy and safety of etanercept in moderate-to-severe asthma: a randomised, controlled trial. Eur Respir J. 2011;37(6):1352–9.PubMedCrossRefGoogle Scholar
  140. 140.
    Wenzel SE, Barnes PJ, Bleecker ER, Bousquet J, Busse W, Dahlen SE, et al. A randomized, double-blind, placebo-controlled study of tumor necrosis factor-alpha blockade in severe persistent asthma. Am J Respir Crit Care Med. 2009;179(7):549–58.PubMedCrossRefGoogle Scholar
  141. 141.
    Corren J, Parnes JR, Wang L, Mo M, Roseti SL, Griffiths JM, et al. Tezepelumab in adults with uncontrolled asthma. N Engl J Med. 2017;377(10):936–46.PubMedCrossRefGoogle Scholar
  142. 142.
    Chakir J, Haj-Salem I, Gras D, Joubert P, Beaudoin EL, Biardel S, et al. Effects of bronchial thermoplasty on airway smooth muscle and collagen deposition in asthma. Ann Am Thorac Soc. 2015;12(11):1612–8.PubMedGoogle Scholar
  143. 143.
    Cox G, Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, et al. Asthma control during the year after bronchial thermoplasty. N Engl J Med. 2007;356(13):1327–37.PubMedCrossRefGoogle Scholar
  144. 144.
    Castro M, Rubin AS, Laviolette M, Fiterman J, De Andrade Lima M, Shah PL, et al. Effectiveness and safety of bronchial thermoplasty in the treatment of severe asthma: a multicenter, randomized, double-blind, sham-controlled clinical trial. Am J Respir Crit Care Med. 2010;181(2):116–24.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Thomson NC, Rubin AS, Niven RM, Corris PA, Siersted HC, Olivenstein R, et al. Long-term (5 year) safety of bronchial thermoplasty: Asthma Intervention Research (AIR) trial. BMC Pulm Med. 2011;11:8.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wechsler ME, Laviolette M, Rubin AS, Fiterman J, Lapa e Silva JR, Shah PL, et al. Bronchial thermoplasty: long-term safety and effectiveness in patients with severe persistent asthma. J Allergy Clin Immunol. 2013;132(6):1295–302.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Ulrik CS. Asthma and obesity: is weight reduction the key to achieve asthma control? Curr Opin Pulm Med. 2016;22(1):69–73.PubMedCrossRefGoogle Scholar
  148. 148.
    Hakala K, Stenius-Aarniala B, Sovijarvi A. Effects of weight loss on peak flow variability, airways obstruction, and lung volumes in obese patients with asthma. Chest. 2000;118(5):1315–21.PubMedCrossRefGoogle Scholar
  149. 149.
    Aaron SD, Fergusson D, Dent R, Chen Y, Vandemheen KL, Dales RE. Effect of weight reduction on respiratory function and airway reactivity in obese women. Chest. 2004;125(6):2046–52.CrossRefGoogle Scholar
  150. 150.
    Johnson JB, Summer W, Cutler RG, Martin B, Hyun DH, Dixit VD, et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med. 2007;42(5):665–74.PubMedCrossRefGoogle Scholar
  151. 151.
    Pakhale S, Baron J, Dent R, Vandemheen K, Aaron SD. Effects of weight loss on airway responsiveness in obese adults with asthma: does weight loss lead to reversibility of asthma? Chest. 2015;147(6):1582–90.CrossRefGoogle Scholar
  152. 152.
    Freitas PD, Ferreira PG, Silva AG, Stelmach R, Carvalho-Pinto RM, Fernandes FL, et al. The role of exercise in a weight-loss program on clinical control in obese adults with asthma. A randomized controlled trial. Am J Respir Crit Care Med. 2017;195(1):32–42.PubMedCrossRefGoogle Scholar
  153. 153.
    Ma J, Strub P, Xiao L, Lavori PW, Camargo CA Jr, Wilson SR, et al. Behavioral weight loss and physical activity intervention in obese adults with asthma. A randomized trial. Ann Am Thorac Soc. 2015;12(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Scott HA, Gibson PG, Garg ML, Pretto JJ, Morgan PJ, Callister R, et al. Dietary restriction and exercise improve airway inflammation and clinical outcomes in overweight and obese asthma: a randomized trial. Clin Exp Allergy. 2013;43(1):36–49.PubMedCrossRefGoogle Scholar
  155. 155.
    Dias-Junior SA, Reis M, de Carvalho-Pinto RM, Stelmach R, Halpern A, Cukier A. Effects of weight loss on asthma control in obese patients with severe asthma. Eur Respir J. 2014;43(5):1368–77.PubMedCrossRefGoogle Scholar
  156. 156.
    Dixon AE, Pratley RE, Forgione PM, Kaminsky DA, Whittaker-Leclair LA, Griffes LA, et al. Effects of obesity and bariatric surgery on airway hyperresponsiveness, asthma control, and inflammation. J Allergy Clin Immunol. 2011;128(3):508–15.e1-2.PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Boulet LP, Turcotte H, Martin J, Poirier P. Effect of bariatric surgery on airway response and lung function in obese subjects with asthma. Respir Med. 2012;106(5):651–60.PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    van Huisstede A, Rudolphus A, Castro Cabezas M, Biter LU, van de Geijn GJ, Taube C, et al. Effect of bariatric surgery on asthma control, lung function and bronchial and systemic inflammation in morbidly obese subjects with asthma. Thorax. 2015;70(7):659–67.CrossRefGoogle Scholar
  159. 159.
    Al-Alwan A, Kaminsky DA, Bates JH, Irvin CG, Dixon AE. Differential effects of bariatric surgery on lung function in asthmatics and controls. C22 ASTHMA THERAPY: American Thoracic Society; 2012. p. A3953-A.Google Scholar
  160. 160.
    Reddy RC, Baptist AP, Fan Z, Carlin AM, Birkmeyer NJ. The effects of bariatric surgery on asthma severity. Obes Surg. 2011;21(2):200–6.CrossRefGoogle Scholar
  161. 161.
    Hasegawa K, Tsugawa Y, Chang Y, Camargo CA Jr. Risk of an asthma exacerbation after bariatric surgery in adults. J Allergy Clin Immunol. 2015;136(2):288–94.e8.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Huttunen R, Syrjanen J. Obesity and the risk and outcome of infection. Int J Obes. 2013;37(3):333–40.CrossRefGoogle Scholar
  163. 163.
    Lazarus SC, Krishnan JA, King TS, Lang JE, Blake KV, Covar R, Lugogo N, Wenzel S, Chinchilli VM, Mauger DT, Dyer A-M, Boushey HA, Fahy JV, Woodruff PG, Bacharier LB, Cabana MD, Cardet JC, Castro M, Chmiel J, Denlinger L, DiMango E, Fitzpatrick AM, Gentile D, Hastie A, Holguin F, Israel E, Jackson D, Kraft M, LaForce C, Lemanske RF, Martinez FD, Moore W, Morgan WJ, Moy JN, Myers R, Peters SP, Phipatanakul W, Pongracic JA, Que L, Ross K, Smith L, Szefler SJ, Wechsler ME, Sorkness CA. Mometasone or tiotropium in mild asthma with a low sputum eosinophil level. New Engl J Med. 2019;380(21):2009–19.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Medicine, Division of Pulmonary Sciences and Critical CareUniversity of ColoradoDenverUSA
  2. 2.Asthma Clinical & Research Programs, Pulmonary Sciences and Critical CareUniversity of ColoradoDenverUSA

Personalised recommendations