Reconstruction and Finite Element Evaluation of a Calcaneous Implant by Stereolithographic 3D Printing Technique

  • Juan Alfonso Beltrán-FernándezEmail author
  • Juan Carlos Hermida-Ochoa
  • Adolfo López-Lievano
  • Luis Héctor Hernández-Gómez
  • Berenice Uribe-Cortes
  • Pablo Moreno-Garibaldi
  • Nefi Pava-Chipol
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 113)


Flexible flat foot in infants can cause pain and physical limitation. Surgical treatment is preferred when pain is severe. Evans enlargement of the lateral aspect of the calcaneus has good results but has complications due to the collapse of bone grafts. Tridimensional segmentation of anatomical areas allows to obtain stereolithographic models that can be numerically analyzed. A stereolithographic model of a healthy calcaneus was obtained from a CT and virtually sectioned to simulate Evans osteotomy. A wedge-shaped implant was made and implanted as described by Evans. Both models were analyzed with a finite element software, the calcaneus model comprised cortical and cancellous bone layers (E = 20 GPa and 457 MPa respectively) The wedge-shaped was assigned PMMA properties (E = 2.4GPa). Three phases of human gait were simulated and stress obtained. The highest von Mises stress occurred at the stance phase (18.25 MPa). None of the stress exceeded the yield stress for all materials in all phases. Reconstruction of anatomic models and implants using a stereolithographic technique allow to predict stress and failure. These models could also be printed 3D to elaborate novel implants.


PMMA Flat-foot Finite element Stereolithographic models 3D printing 


  1. 1.
    Bouchard M, Mosca VS (2014) Flatfoot deformity in children and adolescents: surgical indications and management. JAAOS-J Am Acad Orthop Surg 22(10):623–632CrossRefGoogle Scholar
  2. 2.
    Das SP, Das PB, Ganesh S, Sahu MC (2017) Effectiveness of surgically treated symptomatic plano-valgus deformity by the calcaneo stop procedure according to radiological, functional and gait parameters. J Taibah Univ Med Sci 12(2):102–109Google Scholar
  3. 3.
    Mosca VS (2010) Flexible flatfoot in children and adolescents. J Child Orthop 4(2):107–121CrossRefGoogle Scholar
  4. 4.
    Evans MJ (1998) Podiatry and paediatrics. Curr Paediatr 8(4):237–241CrossRefGoogle Scholar
  5. 5.
    Kelikian A, Mosca V, Schoenhaus HD, Winson I, Weil L Jr (2011) When to operate on pediatric flatfoot. Foot Ankle Spec 4(2):112–119CrossRefGoogle Scholar
  6. 6.
    Bauer K, Mosca VS, Zionts LE (2016) What’s new in pediatric flatfoot? J Pediatr Orthop 36(8):865–869CrossRefGoogle Scholar
  7. 7.
    Mosca VS, Bevan WP (2012) Talocalcaneal tarsal coalitions and the calcaneal lengthening osteotomy: the role of deformity correction. JBJS 94(17):1584–1594CrossRefGoogle Scholar
  8. 8.
    Mosca VS (2014) Management of the painful adolescent flatfoot. Tech Foot Ankle Surg 13(1):3–13CrossRefGoogle Scholar
  9. 9.
    Patrick N, Lewis GS, Roush EP, Kunselman AR, Cain JD (2016) Effects of medial displacement Calcaneal Osteotomy and Calcaneal Z Osteotomy on subtalar joint pressures: a cadaveric flatfoot model. J Foot Ankle Surg 55(6):1175–1179CrossRefGoogle Scholar
  10. 10.
    Ragab AA, Stewart SL, Cooperman DR (2003) Implications of subtalar joint anatomic variation in calcaneal lengthening osteotomy. J Pediatr Orthop 23(1):79–83Google Scholar
  11. 11.
    Evans D (1975) Calcaneo-valgus deformity. J Bone Joint Surg 57(3):270–278 (British volume)CrossRefGoogle Scholar
  12. 12.
    DuMontier TA, Falicov A, Mosca V, Sangeorzan B (2005) Calcaneal lengthening: investigation of deformity correction in a cadaver flatfoot model. Foot Ankle Int 26(2):166–170CrossRefGoogle Scholar
  13. 13.
    Mosca VS (1995) Calcaneal lengthening for valgus deformity of the hindfoot. Results in children who had severe, symptomatic flatfoot and skewfoot. JBJS 77(4):500–512CrossRefGoogle Scholar
  14. 14.
    Yang J, Zhang K, Zhang S, Fan J, Guo X, Dong W, … Yu B (2015) Preparation of calcium phosphate cement and polymethyl methacrylate for biological composite bone cements. Med Sci Monit Int Med J Exp Clin Res 21:1162Google Scholar
  15. 15.
    McCormack BAO, Prendergast PJ (1999) Microdamage accumulation in the cement layer of hip replacements under flexural loading. J Biomech 32(5):467–475CrossRefGoogle Scholar
  16. 16.
    De La Peña A, De La Peña-Brambila J, Pérez-De La Torre J, Ochoa M, Gallardo GJ (2018) Low-cost customized cranioplasty using a 3D digital printing model: a case report. 3D Printing Med 4(1):4Google Scholar
  17. 17.
    Kim BJ, Hong KS, Park KJ, Park DH, Chung YG, Kang SH (2012) Customized cranioplasty implants using three-dimensional printers and polymethyl-methacrylate casting. J Korean Neurosurg Soc 52(6):541CrossRefGoogle Scholar
  18. 18.
    Fernandes da Silva AL, Borba AM, Simão NR, Pedro FLM, Borges AH, Miloro M (2014) Customized polymethyl methacrylate implants for the reconstruction of craniofacial osseous defects. Case reports in surgeryGoogle Scholar
  19. 19.
    Lennon A, McCormack B, Prendergast P (2003) The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses. Med Eng Phys 25(10):833–841CrossRefGoogle Scholar
  20. 20.
    McCormack B, Prendergast P (2018) Microdamage accumulation in the cement layer of hip replacements under flexural loadingGoogle Scholar
  21. 21.
    Nicholson P, Strelitzki R (1999) On the prediction of Young’s modulus in Calcaneal Cancellous bone by ultrasonic bulk and bar velocity measurements. Clin Rheumatol 18(1):10–16CrossRefGoogle Scholar
  22. 22.
    Jeffers J, Browne M, Lennon A, Prendergast P, Taylor M (2007) Cement mantle fatigue failure in total hip replacement: experimental and computational testing. J Biomech 40(7):1525–1533CrossRefGoogle Scholar
  23. 23.
    Race A, Miller M, Mann K (2008) A modified PMMA cement (sub-cement) for accelerated fatigue testing of cemented implant constructs using cadaveric bone. J Biomech 41(14):3017–3023CrossRefGoogle Scholar
  24. 24.
    Hernández-Gómez LH et al (2019) Characterization of scaffold structures for the development of prostheses and biocompatible materials. In: Öchsner A, Altenbach H (eds) Engineering design applications. Advanced structured materials, vol 92. Springer, ChamGoogle Scholar
  25. 25.
    Beltrán-Fernández JA et al (2019) Design and Manufacturing of a Temporomandibular Joint (TMJ) prosthesis for mandibular bone necrosis using the finite element method. In: Öchsner A, Altenbach H (eds) Engineering design applications. Advanced structured materials, vol 92. Springer, ChamGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan Alfonso Beltrán-Fernández
    • 1
    Email author
  • Juan Carlos Hermida-Ochoa
    • 2
  • Adolfo López-Lievano
    • 1
  • Luis Héctor Hernández-Gómez
    • 1
  • Berenice Uribe-Cortes
    • 2
  • Pablo Moreno-Garibaldi
    • 1
  • Nefi Pava-Chipol
    • 1
  1. 1.INSTITUTO POLITÉCNICO NACIONAL - Escuela Superior de Ingeniería Mecánica y Eléctrica - Sección de Estudios de Posgrado e Investigación Edificio 5, 2do Piso, Unidad Profesional Adolfo López Mateos “Zacatenco” Col. LindavistaCiudad de MéxicoMexico
  2. 2.Centro de Investigación y Laboratorio BiomecánicoCiudad de MéxicoMexico

Personalised recommendations