Advertisement

Manufacturing of a Human’s Hand Prosthesis with Electronic Movable Phalanges Based on a CT Image: An Amputation Case

  • Juan Alfonso Beltrán-FernándezEmail author
  • Itzel Alejandrina Aguirre Hernández
  • Itzel Bantle-Chávez
  • Carolina Alvarado-Moreno
  • Luis Héctor Hernández-Gómez
  • Pablo Moreno-Garibaldi
  • Nefi Pava Chipol
  • Juan Carlos Hermida Ochoa
  • Adolfo Lopez Lievano
  • Guillermo Manuel Urriolagoitia-Calderón
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 113)

Abstract

In the present work, the creation of a tridimensional electronic prosthesis which intends to replace the left hand’s phalanges of a patient who suffered severe burns and needed to undergo a partial amputation surgery was performed. Parting of a CT tomography composed of 539 images, the contour delimitation, and separation of each phalanx was carried out through the usage of computerized platforms, such as 3D Slicer and Scan IP. Both software allow the user to analyze every single image in three different planes (axial, sagittal and coronal) and segment the areas of interest, in this case, the index, middle, ring and little fingers’ phalanges. Subsequently, with the support of the platform SolidWorks©, each phalanx was detailed for its connection and posterior 3D printing, implementing an electronic mechanism capable of reproducing flexion-extension movements. The computerized final model was also submitted to mechanical force tests and force simulations based on the analysis of finite elements to ascertain the selected material’s and model’s resistance.

Keywords

Biomechanic Hand phalanges Prosthesis Manufacturing Amputation Computed tomography Magnetic resonance imaging 3D printing 

Notes

Acknowledgements

The authors acknowledge the support given by the National Council for Science and Technology, CONACYT, Mexico; the National Polytechnic Institute, IPN, and Hospital La Raza (IMSS) and CILAB (Biomechanics laboratory) for the means and facilities for the development of this research.

References

  1. 1.
    Kikinis R, Pieter S (2011) 3D Slicer as a tool for interactive brain tumor segmentation. In: 33rd Annual international conference of IEEE EMBS, Boston, MA, USAGoogle Scholar
  2. 2.
    Siddiqi AA, Khawaja A, Zafar M, Husain M (2012) 3D Representation of human skull bearing the tumor using image processing. In: Fourth international conference on computational intelligence, communication systems and networks. IEEEGoogle Scholar
  3. 3.
    Day PA, Digvijay N, Jeeva JB (2014) Pre-operative brain tumor segmentation using Slicer 3D. 2014 international Conference on green computing communication and electrical engineering (ICGCCEE)Google Scholar
  4. 4.
    Pieter S, Halle M, Kikinis R. (2004) 3D slicer. Surgical Planning Laboratory, Brigham and Women’s Hospital, Isomics Inc. IEEEGoogle Scholar
  5. 5.
  6. 6.
    Velázquez Sánchez AT (2007) Caracterización Cinemática e Implementación de una mano robótica multiarticulada. Ph.D. thesis, IPN, Instituto Politecnico Nacional ESIME, Mexico CityGoogle Scholar
  7. 7.
    Hollerbach K, Ashby AE, Logan C, Martz H, Bossart PL, Rikard D (1996) High-resolution hand dataset for joint modeling. In: 18th annual international conference of the IEEE Engineering in Medicine and Biology Society, AmsterdamGoogle Scholar
  8. 8.
    Van De Giessen M, Smitsman H, Strackee SD, van Vliet LJ, Grimbergen KA, Streekstra GJ, Vos FM (2009) A statistical description of the articulating Ulna surface for prosthesis designGoogle Scholar
  9. 9.
    Wikipedia, Encyclopedia online. [Online]. Available. https://es.wikipedia.org/wiki/Mano
  10. 10.
    Synopsis 2017. SimpleWare. [Online]. Available https://simpleware.com/support/videos/?NM6j8ra2Ikw
  11. 11.
    J. R. (n.d.). Las Diferentes Formas del Criterio de Kutzbach-Grübler [PDF]. Salamanca: Facultad de Ingeniería Mecánica, Eléctrica y Electrónica de la Universidad de GuanajuatoGoogle Scholar
  12. 12.
    Bhagat AP (2012) Medical images: formats, compression techniques and DICOM image retrieval a survey. IEEEGoogle Scholar
  13. 13.
    Escalona P, Naranjo J, Lagos V, Solís F (2009) Parámetros de Normalidad en Fuerzas de Prensión de Mano en Sujetos de Ambos Sexos de 7 a 17 Años de Edad. Revista chilena de pediatría 80(5):435–443 [Online]. https://dx.doi.org/10.4067/S0370-41062009000500005
  14. 14.
  15. 15.
    Moreno-Garibaldi P, Beltran-Fernandez JA, Hernandez-Gomez LH, Lopez-Saucedo F, Corro-Valdez N, Lopez-Lievano A (2017) Mechanical characterization of composite material focused on maxillofacial applications. DYNA 92(4):461–465CrossRefGoogle Scholar
  16. 16.
    Microchip, “PIC18F2455/2559/4455/4550 Data Shett’. Microchip Technology 2009Google Scholar
  17. 17.
    Hernández-Gómez LH et al (2019) Characterization of Scaffold structures for the development of prostheses and biocompatible materials. In: Öchsner A, Altenbach H (eds) Engineering design applications. Advanced structured materials, vol 92. Springer, ChamGoogle Scholar
  18. 18.
    Spong MW, Hutchinson S, Vidyasagar M (2006) Robot modeling and control. Wiley, LondonGoogle Scholar
  19. 19.
    Miyazaki N, Kochi M, Mochimaru M, Kurihara T (2005) Finger joint kinematics from MR images. In: 2005 IEEE/RSJ international conference on intelligent robots and systems (IROS 2005)Google Scholar
  20. 20.
  21. 21.
    Battula S, Njus GO (2004) A new method to develop finite element model of the bones in the hand from CT scans. IEEEGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Juan Alfonso Beltrán-Fernández
    • 1
    Email author
  • Itzel Alejandrina Aguirre Hernández
    • 1
  • Itzel Bantle-Chávez
    • 1
  • Carolina Alvarado-Moreno
    • 1
  • Luis Héctor Hernández-Gómez
    • 1
  • Pablo Moreno-Garibaldi
    • 1
  • Nefi Pava Chipol
    • 1
  • Juan Carlos Hermida Ochoa
    • 2
  • Adolfo Lopez Lievano
    • 2
  • Guillermo Manuel Urriolagoitia-Calderón
    • 1
  1. 1.Instituto Politécnico Nacional - Escuela Superior de Ingeniería Mecánica y Eléctrica - Sección de Estudios de Posgrado e Investigación Edificio 5, 2do PisoUnidad Profesional Adolfo López Mateos “Zacatenco” Col. LindavistaCiudad de MéxicoMexico
  2. 2.Centro de Investigación y Laboratorio BiomecánicoCiudad de México (CDMX)Mexico

Personalised recommendations