Advertisement

Mechanical Design and Numerical Analysis of a Femorotibial Implant in Patients with Medial Knee Osteoarthritis

  • José María Aburto-BarreraEmail author
  • Mildred Egure-Hidalgo
  • Christian Díaz-León
  • Juan Alejandro Vázquez-Feijoo
  • Guillermo Urriolagoitia-Sosa
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 113)

Abstract

Medial knee osteoarthritis (OA) is a progressive and degenerative disease characterized by a gradual and progressive destruction of the cartilage that covers the articular surface. OA has increased dramatically in recent years, mainly among young people basically due to sports injuries and overweight. It is one of the leading causes of the musculoskeletal pain and disability in adulthood. For those cases in which the damage at the medial knee zone with a slight to moderate articular wear, it has been proposed a femorotibial implant design which should stop the progression of the degenerative process and alleviate the pain without altering the anatomy and biomechanics of the knee joint. This study is made through computational programs, using the Finite Element Method (FEM), for modeling a three-dimensional assembly which is applied to analyze an implant with a mechanical function and the behavior of the device is studied. Once the femorotibial implant is designed and modeled, a structural numerical lineal-elastic analysis through FEM was made, with the objective to determine the total displacements, as well as, the stress field on the materials. A suitable device was obtained which produced very good results for the safety factor obtained from the stress analysis of the pieces. Finally, it is expected the patient is to be able to carry on his daily activities without pain and improving the quality of life.

Keywords

Knee osteoarthritis Implant Mechanical design Finite element method 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from the Mexican government by the Consejo Nacional de Ciencia y Tecnología and the Instituto Politécnico Nacional.

References

  1. 1.
    Otto R, W-Dahl A, Sundberg M, Stefansdottir A, Knutson K, Lidgren L, Nilsson C, Ranstam J, Czuba T (2014) The Swedish Knee Arthroplasty Register Report, Part 1. ISBN: 978-91-980722-7-3Google Scholar
  2. 2.
    Meehan JP, Danielsen B, HK Sunny, Jamali AA, White RH (2014) Younger age is associated with a higher risk of early periprosthetic joint infection and aseptic mechanical failure after total knee arthroplasty. J Bone Joint Surg  https://doi.org/10.2106/jbjs.m.00545
  3. 3.
    Clifford AG, Gabriel SM, O’Connell MK, Lowe D, Miller LE, Block JE (2013) The Kinespring Knee Implant System: an implantable joint-unloading prosthesis for treatment of medial knee osteoarthritis. Med Dev Evid Res  https://doi.org/10.2147/mder.s44385
  4. 4.
    Schüttler KF, Roessler M, Winkelmann SF, Efe T, Heyse TJ (2015) Failure of a knee joint load absorber: pain, metallosis and soft tissue damage. Musculoeskeletal J Hosp Spec Surg  https://doi.org/10.1007/s11420-015-9436-x
  5. 5.
    Citak M, Kendoff D, O’Loughlin PF, Klatte TO, Gebauer M, Gehrke T, Haasper C (2013) Failed joint unloading implant system in the treatment of medial knee osteoarthritis. Arch Orthopaedic Trauma Surg  https://doi.org/10.1007/s00402-013-1830-6
  6. 6.
    Wolff M, Haasper C, Zahar A, Gauck C, Gherke T, Citak M (2017) Severe metallosis and elevate chromium in serum following implantation of the joint unloading implant system. Arch Orthopaedic Trauma Surg  https://doi.org/10.1007/s00402-017-2813-9
  7. 7.
    Gabriel SM, Clifford AG, Maloney WJ, O’Connell MK and Tornetta P (2013) Unloading the osteoarthritic knee with a novel implant system. J Appl Biomech  https://doi.org/10.1123/jab.29.6.647
  8. 8.
    Bode G, Kloos F, Feucht MJ, Fleischer B, Südkamp N, Niemeyer P, Becker C (2017) Comparison of the efficiency of an extra articular absorber system and high tibial osteotomy for unloading the medial knee compartment: an in vitro study. Knee Surg Sports Traumatol Arthrosc  https://doi.org/10.1007/s00167-016-4358-9
  9. 9.
    ASTM A313/ A313 M-18 (2018) Standard specification for stainless steel spring wire. ASTM International, West Conshohocken, PA, http://www.astm.org. Accessed 24 July 2018
  10. 10.
    Mott RL (2006) Diseño de Elementos de Máquinas. Ed. Pearson. ISBN: 9789702608127Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • José María Aburto-Barrera
    • 1
    Email author
  • Mildred Egure-Hidalgo
    • 1
  • Christian Díaz-León
    • 1
  • Juan Alejandro Vázquez-Feijoo
    • 2
  • Guillermo Urriolagoitia-Sosa
    • 1
  1. 1.Unidad Profesional “Adolfo López Mateos”, Escuela Superior de Ingeniería Mecánica Eléctrica, Sección de Estudios de Posgrado e InvestigaciónInstituto Politécnico NacionalCiudad de MéxicoMexico
  2. 2.Instituto Tecnológico de Tuxtla Gutiérrez, División de Posgrado E InvestigaciónTuxtla GutierrezMexico

Personalised recommendations