Skip to main content

Identification of Inelastic Parameters of the AISI 304 Stainless Steel

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 113))

Abstract

A proper choice of inelastic parameters is one of the most important aspects for a successful simulation of metal forming processes. Several issues must be observed when choosing such parameters, amongst which the compatibility between the magnitude of the plastic deformation of the target forming operation and the mechanical test employed to obtain those parameters. Within this context, the present work addresses the suitability of selected phenomenological hardening models and identification of the corresponding inelastic parameters based on curve-fitting strategies (logarithmic-based equations) and optimization methods (non-logarithmic models) for the AISI 304 austenitic stainless steel. Tensile tests were performed using specimens of different sizes. Based on a combined assessment of all types of specimens, it was observed that the curve-fitting technique was able to describe with excellent accuracy deformations up to maximum load. In order to contemplate larger plastic deformations, an inverse problem strategy based on optimization methods was used to account for material response up to macroscopic failure of the specimens. Numerical simulation of the tensile tests shows that the latter technique associated with non-logarithmic hardening equations provided the best approximation to the experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. McGuire MF (2008) Stainless steels for design engineers. ASM, Materials Park

    Google Scholar 

  2. Subramonian S, Kardes N (2012) Materials for Sheet Forming. In: Altan T, Tekkaya E (eds) Sheet Metal Forming: Fundamentals. ASM, Materials Park

    Google Scholar 

  3. Samuel KG, Rodriguez P (2005) On power-law type relationships and the Ludwigson explanation for the stress-strain behaviour of AISI 316 stainless steel. J Mater Sci 40:5727–5731

    Article  Google Scholar 

  4. Samuel KG (2006) Limitations of Hollomon and Ludwigson stress strain relations in assessing the strain hardening parameters. J Phys D: Appl Phys 39:203–212

    Article  Google Scholar 

  5. Ponthot JP, Kleinermann JP (2006) A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation. Comput Meth Appl Mech Eng 195:5472–5508

    Article  Google Scholar 

  6. Dimatteo A, Colla V, Lovicu G, Valentini R (2015) Strain hardening behavior prediction model for automotive high strength multiphase steels. Steel Res Int 86:1574–1582

    Article  Google Scholar 

  7. Vaz M Jr, Muoz-Rojas PA, Cardoso EL, Tomiyama M (2016) Considerations on parameter identification and material response for Gurson-type and Lemaitre-type constitutive models. Int J Mech Sci 106:254–265

    Article  Google Scholar 

  8. Davis JR (2004) Tensile testing, 2nd edn. ASM, Materials Park

    Google Scholar 

  9. Swift HW (1952) Plastic instability under plane stress. J Mech Phys Solids 1:1–18

    Article  Google Scholar 

  10. Hertelé S, De Waele W, Denys R (2011) A generic stress strain model for metallic materials with two-stage strain hardening behaviour. Int J Non-linear Mech 46:519–531

    Article  Google Scholar 

  11. Kashyap BP, McTaggart K, Tangri K (1988) Study on the substructure evolution and flow behaviour in type 316L stainless steel over the temperature range 21–900 \(^\circ \)C. Phil Mag A 57:97–114

    Article  Google Scholar 

  12. Kashyap BP, Tangri K (1995) On the Hall-Petch relationship and substructural evolution in type 316L stainless steel. Acta Metall Mater 43:3971–3981

    Article  Google Scholar 

  13. De AK, Speer JG, Matlock DK et al (2006) Deformation-induced phase transformation and strain Hardening in type 304 austenitic stainless steel. Metall Mater Trans A 37A:1875–1886

    Article  Google Scholar 

  14. Larour P (2010) Strain rate sensitivity of automotive sheet steels: influence of plastic strain, strain rate, temperature, microstructure, bake hardening and pre-strain. Dr.-Ing. Dissertation, RWTH Aachen

    Google Scholar 

  15. El-Magd E (2004) Modeling and Simulation of Mechanical Behavior. In: Totten GE, Xie L, Funatani K (eds) Modeling and Simulation of Material Selection and Mechanical Design. Dekker, New York

    Google Scholar 

  16. Mecking H, Kocks UF (1981) Kinetics of flow and strain hardening. Acta Metall 29:1865–1875

    Article  Google Scholar 

  17. Voce E (1948) The relationship between stress and strain for homogeneous deformation. J Inst Metals 74:537–562

    Google Scholar 

  18. Tome C, Canova GR, Kocks UF et al (1984) The relation between macroscopic and microscopic strain hardening in f.c.c. polycrystals. Acta Metall 32:1637–1653

    Article  Google Scholar 

  19. Gruber M, Lebaal N, Roth S et al (2016) Parameter identification of hardening laws for bulk metal forming using experimental and numerical approach. Int J Mater Form 9:21–33

    Article  Google Scholar 

  20. Panich S, Barlat F, Uthaisangsuk V, Suranuntchai S, Jirathearanat S (2013) Experimental and theoretical formability analysis using strain and stress based forming limit diagram for advanced high strength steels. Mater & Design 51:756–766

    Google Scholar 

  21. Sugio K, Sasaki G, Tabata J, Fuyama N, (2017) In: Proceedings of the International Symposium on Green Manufacturing and Application. The Korean Society for Precision Engineering, Seoul, pp 51–53

    Google Scholar 

  22. Vaz M Jr, Cardoso EL, Stahlschmidt J (2013) Particle swarm optimization and identification of inelastic material parameters. Eng Comput 30:936–960

    Article  Google Scholar 

  23. de Souza Neto EA, Peric D, Owen DRJ (2008) Computational Methods for Plasticity: Theory and Applications. Wiley, Chichester

    Book  Google Scholar 

  24. Vaz M Jr, Lange MR (2017) Thermo-mechanical coupling strategies in elasticplastic problems Continuum Mech. Thermodyn. 29:373–383

    MATH  Google Scholar 

  25. Nelder JA, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Google Scholar 

  26. Vaz M Jr, Luersen MA, Muoz-Rojas PA, Trentin RG (2016) Identification of inelastic parameters based on deep drawing forming operations using a globallocal hybrid Particle Swarm approach. C R Mecanique 344:319–334

    Article  Google Scholar 

  27. Vaz M Jr, Cardoso EL, Muñoz-Rojas PA et al (2015) Identification of constitutive parameters \(-\) optimization strategies and applications. Mat-wiss Werkstofftech 46:477–491

    Article  Google Scholar 

  28. Banabic D, Kuwabara T, Balan T et al (2003) Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions. Int J Mech Sci 45:797–811

    Article  Google Scholar 

  29. Pannier Y, Avril S, Rotinat R, Pierron F (2006) Identification of elasto-plastic constitutive parameters from statically undetermined tests using the virtual fields method. Exp Mech 46:735–755

    Article  Google Scholar 

  30. Luersen MA, Le Riche R (2004) Globalized NelderMead method for engineering optimization Comput & Struct 82:2251–2260

    Google Scholar 

  31. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optim 9:112–147

    Article  MathSciNet  Google Scholar 

  32. ASTM E8, E8M–09, (2009) Standard Test Methods for Tension Testing of Metallic Materials. ASTM International, West Conshohocken

    Google Scholar 

  33. ABNT NBR-ISO 6892, (2002) Metallic materials \(-\) Tensile testing at ambient temperature. ABNT, Rio de Janeiro

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Brazilian funding agency CNPq (National Council for Scientific and Technological Development), Grant no. 303412/2016-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Vaz Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vaz, M., Hulse, E.R., Tomiyama, M. (2020). Identification of Inelastic Parameters of the AISI 304 Stainless Steel. In: Öchsner, A., Altenbach, H. (eds) Engineering Design Applications II. Advanced Structured Materials, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-030-20801-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20801-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20800-4

  • Online ISBN: 978-3-030-20801-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics