Advertisement

Comparison in Performance of Hybrid and Marvel NoKH Okra/Abelmoschus esculentus Fibre Reinforced Polymer Composites Under Tensile Load

  • Nadendla SrinivasababuEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 113)

Abstract

Fibrous materials obtained from the renewable natural sources of plants, crops are very much essential for the development of green/partially green composite materials. In that line several fibres were extracted from bast, leaves, stem, fruit, seed and stalk etc. by various researchers. Limited work was done on okra fibre and its composites performance under different loading conditions. Now, in this work an attempt was made to explore a new variety of okra fibre i.e. NoKH and was reinforced into epoxy matrix for making cum processing of composites under different conditions of temperature and time. Further, the performance of these composites is compared with hybrid okra fibre reinforced polyester composites conditioned and tested under ASTM standards. Marvel NoKh fibre reinforced epoxy composites processed at T2, t3 have exhibited highest tensile strength and modulus of 60.51 MPa, 1.05 GPa respectively than other composites. Tested composite specimens were examined under SEM to know the bonding between fibre and matrix.

Keywords

Hybrid okra NoKH okra Polyester Aerospace epoxy Tensile properties SEM 

References

  1. 1.
    De Rosa IM, Maria Kenny J, Puglia D et al (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122CrossRefGoogle Scholar
  2. 2.
    Mieck KP, Reussmann T, Nechwatal A (2003) About the characterization of the mechanical properties of natural fibres. Mater Sci Eng Technol 34:285–289Google Scholar
  3. 3.
    Bos HL, Van Den Oever MJA, Peters OCJJ (2002) Tensile and compressive properties of flax fibres for natural fibre reinforced composites. J Mater Sci 37:1683–1692CrossRefGoogle Scholar
  4. 4.
    Nechwatal A, Mieck KP, Reußmann T (2003) Developments in the characterization of natural fibre properties and in the use of natural fibres for composites. Compos Sci Technol 63:1273–1279CrossRefGoogle Scholar
  5. 5.
    Saravanakumara SS, Kumaravelb A, Nagarajanc T et al (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92:1928–1933CrossRefGoogle Scholar
  6. 6.
    Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24:221–274CrossRefGoogle Scholar
  7. 7.
    De Rosa IM, Kenny José M, Maniruzzaman Md et al (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254CrossRefGoogle Scholar
  8. 8.
    Bachtiar D, Sapuan SM, Hamdan MM (2008) The effect of alkaline treatment on tensile properties of sugar palm fibre reinforced epoxy composites. Mater Des 29:1285–1290CrossRefGoogle Scholar
  9. 9.
    Baiardo M, Zini E, Scandola M (2004) Flax fibre–polyester composites. Compos A 35:703–710CrossRefGoogle Scholar
  10. 10.
    Aziz Sharifah H, Ansell Martin P (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1—polyester resin matrix. Compos Sci Technol 64:1219–1230CrossRefGoogle Scholar
  11. 11.
    Aziz Sharifah H, Ansell Martin P, Clarke Simon J et al (2005) Modified polyester resins for natural fibre composites. Compos Sci Technol 65:525–535CrossRefGoogle Scholar
  12. 12.
    Monteiro SN, Terrones LAH, D’Almeida JRM (2008) Mechanical performance of coir fiber/polyester composites. Polym Test 27:591–595CrossRefGoogle Scholar
  13. 13.
    White NM, Ansell MP (1983) Straw-reinforced polyester composites. J Mater Sci 18:1549–1556CrossRefGoogle Scholar
  14. 14.
    Wambua P, Vangrimde B, Lomov S et al (2007) The response of natural fibre composites to ballistic impact by fragment simulating projectiles. Compos Struct 77:232–240CrossRefGoogle Scholar
  15. 15.
    Bisanda ETN, Ansell MP (1991) The effect of silane treatment on the mechanical and physical properties of sisal-epoxy composites. Compos Sci Technol 41:165–178CrossRefGoogle Scholar
  16. 16.
    Corradi S, Isidori T, Corradi M et al (2009) Composite boat hulls with bamboo natural fibres. Int J Mater Prod Technol 36:73–89CrossRefGoogle Scholar
  17. 17.
    Harisha S, Peter Michael D, Bensely A et al (2009) Mechanical property evaluation of natural fiber coir composite. Mater Charact 60:44–49CrossRefGoogle Scholar
  18. 18.
    Herrera-Franco P J, Valadez-Gonza´lez A (2004) Mechanical properties of continuous natural fibre-reinforced polymer composites. Composites Part A 35:339–345Google Scholar
  19. 19.
    Mohanty A K, Misra M, Drzal1 L T (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26Google Scholar
  20. 20.
    Singha AS, Thakur Vijay Kumar (2008) Mechanical properties of natural fibre reinforced polymer composite. Bull Mater Sci 31:791–799CrossRefGoogle Scholar
  21. 21.
    Yan L, Chouw N, Yuan X (2012) Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. J Reinf Plast Compos 31:425–437CrossRefGoogle Scholar
  22. 22.
    Bakry M, Mousa MO, Ali WY (2013) Friction and wear of friction composites reinforced by natural fibres. Mater Sci Eng Technol 44:21–28Google Scholar
  23. 23.
    Taha I (2012) Investigation of flax fibre reinforced epoxy friction composites. Mater Sci Eng Technol 43:1059–1066Google Scholar
  24. 24.
    Facca AG, Kortschot Mark T, Yan N (2006) Predicting the elastic modulus of natural fibre reinforced thermoplastics. Compos A 37:1660–1671CrossRefGoogle Scholar
  25. 25.
    Bogoeva-Gaceva G, Avella M, Malinconico M et al (2007) Natural fiber eco-composites. Polym Comp 28:98–107CrossRefGoogle Scholar
  26. 26.
    Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687CrossRefGoogle Scholar
  27. 27.
    Nabi Saheb D, Jog JP (1999) Natural fiber polymer composites: a review. Adv Polym Tech 18:351–363CrossRefGoogle Scholar
  28. 28.
    Ruys D, Crosky A, Evans WJ (2002) Natural bast fibre structure. Int J Mater Prod Tech 17:2–10CrossRefGoogle Scholar
  29. 29.
    Thomas S, Pothan LA, Cherian BM (2009) Advances in natural fibre reinforced polymer composites: macro to nanoscales. Int J Mater Prod Tec 36:317–333CrossRefGoogle Scholar
  30. 30.
    Mougin G, Magnani M, Eikelenberg N (2009) Natural-fibres composites for the automotive industry: challenges, solutions and applications. Int J Mater Prod Tec 36:176–188CrossRefGoogle Scholar
  31. 31.
    Singh JIP, Singh S, Dhawan V (2018) Effect of curing temperature on mechanical properties of natural fiber reinforced polymer composites. J Nat Fibers 15:687–696CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fibrous Composites Research Lab, Department of Mechanical EngineeringVignan’s Lara Institute of Technology & ScienceVadlamudiIndia

Personalised recommendations