Advertisement

Optimization of the Head Geometry for a Cable Car Passing over a Support

  • M. WeninEmail author
  • A. Windisch
  • S. Ladurner
  • M. L. Bertotti
  • G. Modanese
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 113)

Abstract

In this work we discuss the problem of finding an optimal shape of a cable ropeway support head using optimization techniques. We define a cost function and relevant constraints with the goal to minimize the oscillations of the vehicle when it crosses the support, valid for both driving directions. Our findings reveal potential for practical use by extending Computer Aided Engineering tools by taking this optimization procedure into account.

Keywords

Cable ropeway Optimal support geometry Numerical optimization Unwanted vehicle oscillations 

Notes

Acknowledgements

S. Ladurner and M. Wenin acknowledge financial support by the Amt für Forschung und Innovation der Provinz Bozen, Italy (this work is a part of the project ”Steigerung der Geschwindigkeit und des Fahrkomforts bei der Stützenüberfahrt von Seilbahnanlagen”). A. Windisch acknowledges support by the Austrian Science Fund (FWF), Schroedinger Fellowship J 3800-N27, as well as by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Award No. #DE-FG02-05ER41375.

References

  1. 1.
    Bronstein I, Semendjajew K (1991) Taschenbuch der Mathematik, 25th edn. Teubner Verlagsgesellschaft, B.GzbMATHGoogle Scholar
  2. 2.
    CEN-Norm: Sicherheitsanforderungen für Seilbahnen für den Personenverkehr. Amtsblatt der EU C51 (2009)Google Scholar
  3. 3.
    Czitary E (1962) Seilschwebebahnen, 2nd edn. Springer, WienCrossRefGoogle Scholar
  4. 4.
    Doppelmayr homepage. https://www.doppelmayr.com/unternehmen/ueber-uns/. Accessed 26 Feb 2018
  5. 5.
    Hoffmann K (2009) Oscillation effects of ropeways caused by cross-wind and other influences. FME Trans 175(37):175–184Google Scholar
  6. 6.
    Kopanakis G (2010) Schwingungen bei Seilbahnen. Internationale Seilbahn-Rundschau 1:22Google Scholar
  7. 7.
    Landau LD, Lifschitz EM (2011) Lehrbuch der Theoretischen Physik I, Klassische Mechanik (14.Auflage). Verlag Harry DeutschGoogle Scholar
  8. 8.
    Mathematica homepage. https://www.wolfram.com/mathematica/. Accessed: 16 Mar 2017
  9. 9.
    Thaler H, Wenin M, Brunner J, Reiterer D, Bertotti ML, Modanese G, Oberhuber E (2016) Numerical optimization in ropeway planning. Advanced structured materials. Springer, Heidelberg, pp 113–124Google Scholar
  10. 10.
    Wenin M, Windisch A, Ladurner S, Bertotti ML, Modanese G (2019) Optimal velocity profile for a cable car passing over a support. Eur J Mech 73:366–372MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Wenin
    • 1
    Email author
  • A. Windisch
    • 2
    • 3
  • S. Ladurner
    • 4
  • M. L. Bertotti
    • 5
  • G. Modanese
    • 5
  1. 1.CPE Computational Physics and EngineeringLanaItaly
  2. 2.Department of PhysicsWashington University in St. LouisSt. LouisUSA
  3. 3.Department of PhysicsUniversity of GrazGrazAustria
  4. 4.Doppelmayr ItaliaLanaItaly
  5. 5.Faculty of Science and TechnologyFree University of BozenBolzanoItaly

Personalised recommendations