Structural Analysis by Finite Element Method in Ball Valves to Improve Their Mechanical Properties

  • M. Egure-Hidalgo
  • J. M. Aburto-Barrera
  • C. R. Torres-San Miguel
  • J. Martinez-Reyes
  • B. Romero-ÁngelesEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 113)


Thermoelectric power plants have steam lines that are mainly structured by pipes, y-pattern globe valves and ball valves. According to international databases (Rogers in The Guardian 18, 2011 [7]), the most common problems in valves are erosion and material thermal expansion that produce pressure drop, heat loss, material leakage and crack nucleation. For these reasons, while engineering process is applied, structural analyses are generated to show the material behavior under a linear external agent (Stolarski et al. in Engineering analysis with ANSYS software. Butterworth-Heinemann, 2018 [8]). However, the steam tends to behave in a saturated way before it becomes in a superheated steam to improve thermal efficiency and work capability. So, through Mollier diagrams, ASME and ASTM standards, mechanical properties of materials and the boundary conditions that supply a fixed value constrain, and contact constrains presented in ball valves. It’s proposed a variable structural elastic-linear static analysis with an isotropic material using the Finite Element Method. Where a homogeneous behavior in the variation of pressure and temperature represent the structural changes of the valve while is working with saturated and superheated steam with the aim to consider and understand the critical components of the assembly, which in this case of study are; the body, the ball and the seats. In such a way that, applying a load similar to the fluid characteristics and unloading the system, total displacements and principal stresses can be obtained during each step. And through Von Mises failure theory. It can be obtained the more prone areas to failure by elongations/contractions that could affect the correct function of the valve during service.


Finite element method Ball valve Structural analysis 3D modeling 



The authors thank to the Instituto Politécnico Nacional and the Consejo Nacional de Ciencia y Tecnología f or the support provided in the elaboration of this work.


  1. 1.
    ANSYS Inc. (2011) Ansys mechanical APDL element reference, pp 61,62,975,1066Google Scholar
  2. 2.
    Bedford A, Fowler W (2000) Dinámica: Mecánica para ingeniería, vol 1. Pearson EducaciónGoogle Scholar
  3. 3.
    Flow-Tek Inc. (2016) High performance severe service: Metal Seated Ball Valves, Ed Bray International Inc. Accessed Dec 2017
  4. 4.
    Kinsky R (1986) Engineering mechanics and strength of materials. McGraw-HillGoogle Scholar
  5. 5.
    Miller U, Pastor T (2009) Section VIII—division 1: rules for construction of pressure vessels. Companion guide to the ASME boiler and pressure vessel code, vol 2, 3rd edn. ASME PressGoogle Scholar
  6. 6.
    Mott R (1996) Mecánica de fluidos aplicada. Pearson Educación, pp 75–94Google Scholar
  7. 7.
    Rogers S (2011) Nuclear power plant accidents: listed and ranked since 1952. The Guardian, 18Google Scholar
  8. 8.
    Stolarski T, Nakasone Y, Yoshimoto S (2018) Engineering analysis with ANSYS software. Butterworth-HeinemannGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Egure-Hidalgo
    • 1
  • J. M. Aburto-Barrera
    • 1
  • C. R. Torres-San Miguel
    • 1
  • J. Martinez-Reyes
    • 2
  • B. Romero-Ángeles
    • 1
    Email author
  1. 1.Escuela Superior de Ingeniería Mecánica y Eléctrica, Sección de Estudios de Posgrado e Investigación, Unidad Profesional Adolfo López Mateos “Zacatenco”Instituto Politécnico NacionalCiudad De MéxicoMexico
  2. 2.Escuela Superior de Ingeniería Mecánica y Eléctrica, ISISA, Unidad Profesional Adolfo López Mateos “ZacatencoInstituto Politécnico NacionalCiudad De MéxicoMexico

Personalised recommendations