Advertisement

Contribution to an Electrical Transport in Montmorillonite/Polyaniline Composite

  • S. RusnákováEmail author
  • K. Karvanis
  • P. Koštial
  • Z. Koštialová-Jančíková
  • A. Zimula
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 113)

Abstract

The paper deals with the electrical properties of Montmorillonite (MMT)/Polyaniline (PANI) composites. These materials show specific electrical properties as relatively high anisotropic electrical conductivity and the thermally induced electrical transport shows relatively large spectrum of charge transport mechanisms. The paper presents measurements of dc conductivity versus temperature as well as the measurements of ac. conductivity at ambient temperature for the investigated samples.

Keywords

PANI/MMT structure dc. and ac. Electric conductivity 

Notes

Acknowledgements

This paper was created with the financial support of the internal grant of TBU in Zlín No. IGA/FT/2018/004 funded from the resources of specific university research.

References

  1. 1.
    Weiss Z, Kužvart M (2005) Jílové minerály: jejich nanostruktura a využití. Vyd. 1. Praha: Karolinum, ISBN 80-246-0868-5Google Scholar
  2. 2.
    Silicate Structures. Tulane University [online]. USA, [cit. 2016-02-27], http://www.tulane.edu/~sanelson/eens211/silicate_structures08.htm
  3. 3.
    Tokarský J, Mamulová-Kutláková K, Neuwirthová L, Kulhánková L, Stýskala V, Matějka V, Čapková P (2013) Texture and electrical conductivity of pellets pressed from PANI and PANI/montmorillonite intercalate. Acta Geodynamica et Geomaterialia 10(3):371–377.  https://doi.org/10.13168/AGG.2013.0036CrossRefGoogle Scholar
  4. 4.
    Kulhánková L, Tokarský J, Matějka V, Peikertová P, Vallová S, Mamulová-Kutláková K, Stýskala V, Čapková P (2014) Electrically conductive and optically transparent polyaniline/montmorillonite nanocomposite thin films. Thin Solid Films 562:319–325.  https://doi.org/10.1016/j.tsf.2014.05.006CrossRefGoogle Scholar
  5. 5.
    Tokarský J, Kulhánková L, Stýskala V, Mamulová-Kutláková K, Neuwirthová L, Matějka V, Čapková P (2013) High electrical anisotropy in hydrochloric acid doped polyaniline/phyllosilicate nanocomposites: effect of phyllosilicate matrix, synthesis pathway and pressure. Appl Clay Sci 80–81:126–132.  https://doi.org/10.1016/j.clay.2013.06.029CrossRefGoogle Scholar
  6. 6.
    Gregory RV, Kimbrell WC, Kuhn HH (1989) Conductive textiles. Synth Met 28:823–835CrossRefGoogle Scholar
  7. 7.
    Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325.  https://doi.org/10.1002/pi.2476CrossRefGoogle Scholar
  8. 8.
    Sapurina I, Riede A, Stejskal J (2001) In-situ polymerized polyaniline films: 3. Film formation. Synth Metals 123(3):503–507.  https://doi.org/10.1016/S0379-6779(01)00349-6CrossRefGoogle Scholar
  9. 9.
    Lu J, Zhao X (2002) Electrorheological properties of a polyaniline-montmorillonite clay nanocomposite suspension. J Mater Chem 12(9):2603–2605.  https://doi.org/10.1039/B203921DCrossRefGoogle Scholar
  10. 10.
    Lerf A, Čapková P: Nalva H. S. (Ed.) (2004) Encyclopedia of nanoscience and nanotechnology, vol 2, pp 639–694, American Scientific Publishers, Stevenson Ranch, CA, USAGoogle Scholar
  11. 11.
    Zheng H, Feng X, Zhou L, Ye Y, Chen J (2016) Intercalated polyaniline-kaolinite nanocomposite prepared via in situ mechanochemical synthesis. J Appl Polym Sci 133(32)Google Scholar
  12. 12.
    do Nascimento GM, Pradie NA (2016) Deprotonation, Raman dispersion and thermal behavior of polyaniline-montmorillonite nanocomposites. Synthetic Metals 217:109–116.  https://doi.org/10.1016/j.synthmet.2016.03.016
  13. 13.
    Abd El-Ghaffar MA, Youssef AM, Abd El-Hakim AA (2015) Polyaniline nanocomposites via in situ emulsion polymerization based on montmorillonite: preparation and characterization. Arab J Chem 8(6):771–779.  https://doi.org/10.1016/j.arabjc.2014.01.001CrossRefGoogle Scholar
  14. 14.
    Lagaly G, Ogawa M, Dékány I (2006). In: Bergaya F, Theng BKG, Lagaly G (eds) Handbook of clay science, developments in clay science, vol 1, pp 309–377. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Piao SH, Kwon SH, Choi HJ (2016) Stimuli-responsive polymer-clay nanocomposites under electric fields. Materials 9(1):52.  https://doi.org/10.3390/ma9010052CrossRefGoogle Scholar
  16. 16.
    Tokarský (2016) Habilitation thesis, Technical University of OstravaGoogle Scholar
  17. 17.
    Hamann C, Burghardt H, Frauenheim T (1988) Electrical conduction mechanisms in solids. VEB, BerlínGoogle Scholar
  18. 18.
    Owen AE (1963) Electric conduction and dielectric relaxation in glass. In: Progress in ceramic science, vol 3 (Burke J.). Pergamon Press, ParisGoogle Scholar
  19. 19.
    Daniel VV (1967) Dielectric relaxation. Academic press, New YorkGoogle Scholar
  20. 20.
    Kubliha M (2007) Exploitation of electric dielectric methods for material research non-metallic materials. Alumni Press, TrnavaGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • S. Rusnáková
    • 1
    Email author
  • K. Karvanis
    • 1
  • P. Koštial
    • 2
  • Z. Koštialová-Jančíková
    • 2
  • A. Zimula
    • 2
  1. 1.Department of Production Engineering, Faculty of TechnologyTomas Bata University in ZlínZlinCzech Republic
  2. 2.Department of Material Engineering, Faculty of Metallurgy and Materials EngineeringVŠB – Technical University of OstravaOstravaCzech Republic

Personalised recommendations