Skip to main content

D3CAS: Distributed Clustering Algorithm Applied to Short-Text Stream Processing

  • Conference paper
  • First Online:
Computer Science – CACIC 2018 (CACIC 2018)

Abstract

In this article, a proof of concept of a dynamic clustering algorithm based on density, called D3CAS, is presented. This algorithm was implemented to be run under the Spark Streaming framework, and it allows processing data streams. The algorithm was tested using a stream of short texts consisting of requirements generated by social media users, in particular, from a dataset called Pizza Request Dataset. The results, obtained in a virtualized environment, were analyzed with different configurations for algorithm parameters, which allowed establishing which are the configurations that yield the best results. Since the dataset used includes the label for each text in the stream, cluster purity could be measured and the results obtained could be compared to those presented by the authors of the dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Schlobach, S., Klein, M.: What is concept drift and how to measure it? In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp. 241–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16438-5_17

    Chapter  Google Scholar 

  2. Aggarwal, C.C.: Data streams: an overview and scientific applications. In: Gaber, M. (ed.) Scientific Data Mining and Knowledge Discovery. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02788-8_14

    Chapter  Google Scholar 

  3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2002), New York, NY, USA, pp. 1–16. ACM (2002). https://doi.org/10.1145/543613.543615

  4. Molina, R., Hasperué, W.: D3CAS: un Algoritmo de Clustering para el Procesamiento de Flujos de Datos en Spark. In: Proceedings of the XXIV Congreso Argentino de Ciencias de la Computación, pp. 452–461 (2018). ISBN 978-950-658-472-6

    Google Scholar 

  5. Miner, G., Elder, J., Hill, T., Nisbet, R., Delen, D., Fast, A.: Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications. Academic Press, Cambridge (2012)

    Google Scholar 

  6. Halibas, A.S., Shaffi, A.S., Mohamed, M.A.K.V.: Application of text classification and clustering of Twitter data for business analytics. In: Majan International Conference (MIC), Muscat, pp. 1–7 (2018)

    Google Scholar 

  7. Li, P., et al.: Learning from short text streams with topic drifts. IEEE Trans. Cybern. 48(9), 2697–2711 (2018). https://doi.org/10.1109/TCYB.2017.2748598

    Article  Google Scholar 

  8. Jain, A., Sharma, I.: Clustering of text streams via facility location and spherical K-means. In: Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, pp. 1209–1213 (2018)

    Google Scholar 

  9. Duan, R., Li, C.: An adaptive Dirichlet multinomial mixture model for short text streaming clustering. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, pp. 49–55 (2018)

    Google Scholar 

  10. Gama, J., Rodrigues, P.P.: An overview on mining data streams. In: Abraham, A., Hassanien, A.E., de Carvalho, A.P.L.F., Snášel, V. (eds.) Foundations of Computational, Intelligence Volume 6. Studies in Computational Intelligence, vol. 206. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01091-0_2

    Chapter  Google Scholar 

  11. Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium (2016)

    Google Scholar 

  12. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases-Volume 29, pp 81–92. VLDB Endowment (2003)

    Google Scholar 

  13. Zhang, P., Zhu, X., Shi, Y., Wu, X.: An aggregate ensemble for mining concept drifting data streams with noise. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 1021–1029. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_109

    Chapter  Google Scholar 

  14. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the SIAM International Conference on Data Mining, pp. 328–339 (2006)

    Google Scholar 

  15. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  16. Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.: StreamKM++: a clustering algorithm for data streams. ACM J. Exp. Algorithmics 17(1), 173–187 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)

    Google Scholar 

  18. Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 628–643. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_41

    Chapter  Google Scholar 

  19. Althoff, T., Danescu-Niculescu-Mizil, C., Jurafsky, D.: How to ask for a favor: a case study on the success of altruistic requests. In: Proceedings of ICWSM (2014)

    Google Scholar 

  20. Reed, J.W., Jiao, Y., Potok, T.E., Klump, B.A., Elmore, M.T., Hurson, A.R.: TF-ICF: a new term weighting scheme for clustering dynamic data streams, pattern recognition. In: Proceedings of the 5th International Conference on Machine Learning and Applications (ICMLA 2006) (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldo Hasperué .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Molina, R., Hasperué, W., Villa Monte, A. (2019). D3CAS: Distributed Clustering Algorithm Applied to Short-Text Stream Processing. In: Pesado, P., Aciti, C. (eds) Computer Science – CACIC 2018. CACIC 2018. Communications in Computer and Information Science, vol 995. Springer, Cham. https://doi.org/10.1007/978-3-030-20787-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20787-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20786-1

  • Online ISBN: 978-3-030-20787-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics